Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biomedicines ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790988

RESUMO

Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis.

2.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397855

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.

3.
Nutrients ; 15(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678175

RESUMO

Our recent report illustrated the unitedly advantageous effects of postbiotic butyrate on active vitamin D3 (VD3)-orchestrated innate immunity in Salmonella colitis. There is growing awareness that aryl hydrocarbon receptor (AhR) can regulate intestinal immunity and barrier function, through modulating cecal inflammation and junction proteins expression. Hence, we researched the participation of AhR-regulated tight junction functions on the united effects of butyrate and VD3 on intestinal defense to Salmonella infection. Salmonella colitis model were elicited by oral gavage with 1 × 108 CFU of a S. typhimurium wild-type strain SL1344 in C57BL/6 mice. Before and after the colitis generation, mice were fed with butyrate and/or VD3 by oral gavage in the absence or presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed that butyrate and VD3 could concert together to reduce the invasion of Salmonella in colitis mice by enhancing cecal cytokines and antimicrobial peptides expression and reducing zonulin and claudin-2 protein expressions in mucosal stain, compared to single treatment, which were counteracted by AhR inhibitor. It implies that AhR is involved in the united effects of butyrate and VD3 on the intestinal defense to Salmonella infection in colitis mice. This study discloses the promising alternative therapy of combining postbiotic and VD3 for invasive Salmonellosis and the pivotal role of AhR pathway.


Assuntos
Colite , Infecções por Salmonella , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Colecalciferol/farmacologia , Junções Íntimas/metabolismo , Butiratos/farmacologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Infecções por Salmonella/tratamento farmacológico , Salmonella , Imunidade Inata , Proteínas de Junções Íntimas
4.
Biomedicines ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672703

RESUMO

Our recent study observed the combined beneficial effects of postbiotic butyrate on active vitamin D3-orchestrated innate immunity to Salmonella Colitis. There is increasing interest in the role of acyl hydrocarbon receptor (AhR) on colitis and innate immunity. Therefore, we investigated the involvement of AhR in the effects. Salmonella colitis model is conducted with 6-8 w/o male C57BL/6 mice: Streptomycin (20 mg/mouse p.o.)-pretreated C57BL/6 mice were mock infected with sterile PBS or infected orally with 1 × 108 CFU of an S. typhimurium wild-type strain SL1344 for 48 h. Before and after the colitis induction, mice were oral gavage with active vitamin D3 0.2 µg/25 g mice (VD3) and/or postbiotics propionate (PP), in the absence of the presence of intraperitoneal injection of AhR inhibitor for 4 and 7 days, respectively. We observed AhR inhibitor counteracted the synergistic effects of PP and VD3 on reducing the severity of Salmonella colitis and body weight loss in C57BL/6 mice, reducing the cecal inflammatory but enhancing antimicrobial peptide mRNAs expression, and reducing the bacterial translocation in liver/spleen, compared to single treatment. It suggests the involvement of AhR on the synergistic effects of postbiotics PP and VD3 on the antibacterial and anti-inflammatory responses in Salmonella colitis and the potential biological treatment of Salmonella colitis.

5.
Abdom Radiol (NY) ; 47(5): 1714-1724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243533

RESUMO

OBJECTIVES: The existence of smooth muscle alteration in Crohn's disease (CD) is often neglected. It has been found that muscular hyperplasia/hypertrophy rather than fibrosis was the primary component of bowel wall thickening. This study aimed to assess the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion weighted imaging for the characterization of histopathologic tissue composition of CD, particularly smooth muscle hypertrophy, as well as inflammation and fibrosis. METHODS: The study included patients diagnosed with CD who received MRI examination 30 days before resection from August 2016 to December 2020. A semiquantitative histological grading scheme was employed to evaluate the pathological tissues. Resected sections were matched with MRI according to pathological marks. Parameters evaluated included: mural thickness, T2 ratio, apparent diffusion coefficient value; and maximum enhancement, initial slope of increase, perfusion parameters of DCE-MRI and enhancement pattern. These parameters were compared with location-matched histopathological grade. RESULTS: Ninety-one sections were enrolled in this retrospective study. When active inflammation is moderate or severe, volume transfer coefficient (Ktrans), maximum enhancement (ME) and initial slope of increase (ISI) are lower, mural thickness is higher when a certain degree of smooth muscle alteration is present. When active inflammation is absent or mild, ME, mural thickness and ISI can differentiate the presence of predominant muscular alteration. By combining ME and thickness comparisons against their cutoff values to create a combined ordinal parameter, the area under the curve value for whether significant muscular alteration coexists with moderate or severe active inflammation was found to be 0.953. CONCLUSIONS: MRI predicts the degree of inflammation, and can distinguish the degree of muscular alteration coexists with moderate or severe active inflammation with reasonable accuracy.


Assuntos
Doença de Crohn , Doença de Crohn/complicações , Doença de Crohn/diagnóstico por imagem , Fibrose , Humanos , Hiperplasia , Hipertrofia/diagnóstico por imagem , Inflamação/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
6.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943999

RESUMO

Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1ß, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature.


Assuntos
Imunidade nas Mucosas , Imunidade , Interleucinas/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Animais , Humanos
7.
Biomedicines ; 9(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680413

RESUMO

Salmonella spp. Remains a major public health problem globally. Biomedicine is the cornerstone of modern health care and could be a solution for antibiotic-resistant Salmonellosis. Although postbiotics seem to be an effective treatment in various clinical conditions, their clinical effects on Salmonella colitis have not been reported. Our previous report revealed that active vitamin D attenuates the severity of Salmonella colitis and invasiveness by reducing inflammation and enhancing the production of antimicrobial peptides. Therefore, we investigated the synergistic effects of butyrate, the most studied postbiotic, and active vitamin D on the severity of Salmonella colitis, invasiveness of Salmonella, and host immune responses, as well as its novel mechanisms, using in vitro and in vivo studies. We demonstrated that a combination of butyrate and active vitamin D (1 alpha, 25-dihydroxyvitamin D3) synergically reduced the severity of Salmonella colitis in C57BL/6 mice and reduced cecal inflammatory mIL-6, mIL-8, mTNF-α, and mIL-1ß mRNA expression, but enhanced the antimicrobial peptide mhBD-3 mRNA, compared to a single treatment. Additionally, upregulated vitamin D receptor (VDR) plays a critical role in the synergistic effects. This suggests combined benefits of butyrate and active vitamin D on Salmonella colitis through VDR-mediated antibacterial and anti-inflammatory responses. The combined use of both supplements could be a potential biomedicine for infectious and autoimmune colitis.

8.
Microorganisms ; 9(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34576700

RESUMO

Salmonella spp. remains a major public health problem for the whole world. Intestinal epithelial cells serve as an essential component of the mucosal innate immune system to defend against Salmonella infection. Our in vitro studies showed probiotics and active vitamin D have similar effects on innate immunity in Salmonella-infected intestinal epithelial cells, including antimicrobial peptide and inflammatory responses, to protect the host against infection while downregulating detrimental overwhelming inflammation. Hence, we investigated the synergistic effects of probiotics and active vitamin D on Salmonella colitis and translocation to liver and spleen by in vitro and in vivo studies. The Salmonella colitis model is conducted with 6-8 w/o male C57BL/6 mice: Streptomycin (20 mg/mouse p.o.)-pretreated C57BL/6 mice are mock infected with sterile PBS or infected orally with 1 × 108 CFU of a S. Typhimurium wild-type strain SL1344 for 48 h. The mice in the treated groups received 1, 25D daily (0.2 ug/25 g/d) and/or 1 × 108 CFU of probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) by intragastric administration for 14 days. The in vivo study demonstrated the combination of probiotic Bifidobacterium longum and active vitamin D3 had the synergistic effects on reducing the severity of Salmonella colitis and body weight loss in C57BL/6 mice by reducing cecal inflammatory mIL-6, mIL-8, mTNF-α and mIL-1ß mRNA responses, blocking the translocation of bacteria while enhancing the antimicrobial peptide mhBD-3 mRNA in comparison to the infection only group. However, LGG did not have the same synergistic effects. It suggests the synergistic effects of Bifidobacterium longum and active vitamin D on the antibacterial and anti-inflammatory responses in Salmonella colitis. Therefore, our in vivo studies demonstrated that the combination of probiotic Bifidobacterium longum and active vitamin D3 has the synergistic effects on reducing the severity of Salmonella colitis via the suppression of inflammatory responses, and blocking the translocation of bacteria through the enhancement of antimicrobial peptides.

9.
Opt Express ; 29(3): 4632-4644, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771035

RESUMO

We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The linewidth and spectral brightness of our biphotons surpass those of the biphotons produced with the hot-atom SFWM in the previous works. Moreover, the generation rate of the sub-MHz biphoton source in this work can also compete with those of the sub-MHz biphoton sources of the cold-atom SFWM or cavity-assisted spontaneous parametric down conversion. Here, the biphoton linewidth is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the generation rate per linewidth is 1,500 pairs/(s·MHz) and the maximum two-photon correlation function, gs,as(2), of the biphotons is 42. This gs,as(2) violates the Cauchy-Schwarz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3×104 pairs/(s·MHz), while the maximum gs,as(2) became 6.7. In addition, we are able to tune the linewidth down to 290±20 kHz. This is the narrowest linewidth to date among all single-mode biphoton sources of room-temperature and hot media.

10.
Immun Inflamm Dis ; 9(2): 481-491, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33559391

RESUMO

INTRODUCTION: Salmonella spp. pose major public health problems worldwide. A better understanding of the pathogenesis of these foodborne pathogens is a prerequisite for the design of improved intervention strategies that could reduce the use of antimicrobial agents and drug-resistant Salmonellosis. Accumulating evidence indicates that vitamin D is involved in regulating innate immunity, and may, therefore, play a key role in human responses to infection. Studies have suggested 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, effectively ameliorates colitis. These findings have broad implications for the use of vitamin D compounds in colitis. This study investigated the effect of active vitamin D3 on the severity of Salmonella colitis. METHODS: A Salmonella colitis model was established with 6-8-week-old male C57BL/6 mice: Streptomycin-pretreated C57BL/6 mice were infected orally with Salmonella enterica serova Typhimurium wild-type strain SL1344 for 48 h. The mice were randomly assigned to control, model, and 1,25(OH)2 D3 -treated groups. After the experiment, the mice were sacrificed, and intestinal, spleen, and liver tissue samples were removed to analyze bacterial colonization, western blot for protein levels, and real-time-polymer chain reaction for messenger RNA (mRNA) expression. RESULTS: We observed that 1,25D3 reduced the severity of Salmonella colitis in C57BL/6 mice by reducing cecal mIL-1beta, mIL-6, mTNF-alpha, and mIL-8 mRNA expressions, bacterial colonization (CFU/mg tissue) in the liver and spleen, but increased the human ß-defensin-2 mRNA and autophagy protein expression, compared to those of the SL1344 infection only. CONCLUSIONS: Our results document that active vitamin D3 reduced Salmonella colitis by decreasing inflammation, and bacterial translocation via induction of killing and autophagic clearance of pathogenic organisms.


Assuntos
Colecalciferol , Colite , Animais , Masculino , Camundongos , Colecalciferol/farmacologia , Colite/tratamento farmacológico , Imunidade Inata , Camundongos Endogâmicos C57BL , Salmonella typhimurium
11.
Children (Basel) ; 7(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020418

RESUMO

Kawasaki disease (KD) is the most common cause of heart disease acquired in childhood. Even if treated with high-dose intravenous immunoglobulin G (IVIG) at the early stage; children are still at risk of developing coronary artery lesions. Accumulating evidence suggests that autophagy is enhanced in various heart diseases. Evaluating the pathogenic role of autophagy in KD and coronary artery lesions (CAL) may aid in identifying a potential therapeutic target for the treatment or prevention of the disease. Blood samples were obtained from 20 children with KD at the onset of disease and 21 days after IVIG therapy. Twenty children with other causes of febrile disease and 20 healthy children were included as controls. Total RNA was extracted from white blood cells; and autophagy-related gene mRNA expression levels were measured using real-time polymerase chain reaction. The patients with KD had downregulated levels of LC3B mRNA (0.50 ± 0.06 vs. 1.67 ± 0.15; p < 0.001), BECN1 mRNA (0.70 ± 0.08 vs. 1.43 ± 0.23; p < 0.05), and ATG16L1 mRNA (0.28 ± 0.04 vs. 0.96 ± 0.16; p < 0.01) compared to the febrile control group. The values of these parameters all increased significantly 21 days after the IVIG therapy as follows: LC3B mRNA (1.77 ± 0.29 vs. 0.50 ± 0.06; p < 0.001), BECN1 mRNA (1.67 ± 0.36 vs. 0.70 ± 0.08; p < 0.05), and ATG16L1 mRNA (2.96 ± 0.43 vs. 0.28 ± 0.04; p < 0.001), while the level of ATG16L1 mRNA persists low in KD patients with CAL. Our results showed the autophagy-related genes expressions in KD and their change after IVIG administration. This suggests that autophagy may have a protective effect on KD.

12.
Children (Basel) ; 7(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050667

RESUMO

Acute appendicitis is one of the most common pediatric abdominal emergencies. Early diagnosis is vital for a positive outcome. However, it may initially present with diarrhea and vomiting, mimicking acute gastroenteritis, thus delaying prompt surgery. Differentiating appendicitis from gastroenteritis in a timely manner poses a challenge. Therefore, we aim to investigate the predictors that help distinguish acute appendicitis from acute gastroenteritis. We conducted a retrospective case-control study, evaluating children admitted due to abdominal pain with diarrhea. Subjects were divided into two groups according to the final diagnoses: acute appendicitis and acute gastroenteritis. We adopted multiple logistic regression analysis and the area under the receiver operating characteristic curve to identify independent predictors of acute appendicitis and select the best model. A total of 32 patients diagnosed with appendicitis and 82 patients with gastroenteritis were enrolled. Five independent predictors of acute appendicitis included vomiting, right lower quadrant (RLQ) pain, stool occult blood (OB), white blood cell (WBC) count, and C-reactive protein (CRP). The revised combined model exhibited a higher degree of discrimination and outperformed the pediatric appendicitis score (PAS) model. In conclusion, our study was proved to be helpful for assessing cases with abdominal pain and diarrhea in order to more accurately distinguish appendicitis from gastroenteritis in children in a timely manner.

13.
Innate Immun ; 26(7): 592-600, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988256

RESUMO

The human pathogen Pseudomonas aeruginosa can rapidly induce fatal sepsis, even in previously healthy infants or children treated with appropriate antibiotics. To reduce antibiotic overuse, exploring novel complementary therapies, such as probiotics that reportedly protect patients against P. aeruginosa infection, would be particularly beneficial. However, the major mechanism underlying the clinical effects is not completely understood. We thus aimed to investigate how probiotics affect IL-8 and human beta-defensin 2 (hBD-2) in P. aeruginosa-infected intestinal epithelial cells (IECs). We infected SW480 IECs with wild type PAO1 P. aeruginosa following probiotic treatment with Lactobacillus rhamnosus GG or Bifidobacterium longum spp. infantis S12, and analysed the mRNA expression and secreted protein of IL-8 and hBD-2, Akt signalling and NOD1 receptor protein expression. We observed that probiotics enhanced hBD-2 expression but suppressed IL-8 responses when administered before infection. They also enhanced P. aeruginosa-induced membranous NOD1 protein expression and Akt activation. The siRNA-mediated Akt or NOD1 knockdown counteracted P. aeruginosa-induced IL-8 or hBD-2 expression, indicating regulatory effects of these probiotics. In conclusion, these data suggest that probiotics exert reciprocal regulation of inflammation and antimicrobial peptides in P. aeruginosa-infected IECs and provide supporting evidence for applying probiotics to reduce antibiotic overuse.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Probióticos/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , beta-Defensinas/metabolismo , Bifidobacterium longum , Linhagem Celular Tumoral , Humanos , Lacticaseibacillus rhamnosus , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Pseudomonas/microbiologia , RNA Interferente Pequeno , Transdução de Sinais
14.
Circ J ; 83(10): 2070-2078, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31378745

RESUMO

BACKGROUND: Kawasaki disease (KD) severely threatens young children's health worldwide. The pathogenic mechanism of KD has not yet been solved, so there is still debate over whether KD is an infectious disease or an autoimmune disease.Methods and Results:To solve this problem, an immune repertoire analysis of KD was conducted. We collected blood cell RNA samples and prepared them into amplicons with iRepertoire kits. The amplicons were sequenced and analyzed with the iRepertoire pipeline. We first identified KD-specific VJ and VDJ forms that had the potential to serve as biomarkers of KD. In addition, the KD-specific VDJ forms were contributed mostly by immunoglobulin G. The D50 value analysis showed that B-cell diversity in KD is decreased, suggesting unique immunoglobulins are produced in KD. Moreover, V, D and J segment usage in IgA, IgG and IgM was consistent with previous KD studies. Further comparison showed no difference in CDR3 peptide length between KD and fever controls (subjects with fever but not diagnosed as KD), indicting KD had B-cell selection phenomenon that has a non-autoimmune pattern. The comparison of amino acid usage of the CDR3 region demonstrated a preference for hydrophilic amino acids in KD. CONCLUSIONS: The results of D50 value, VDJ usage and CDR3 peptide length analyses suggested the characteristics of infectious disease for KD.


Assuntos
Diversidade de Anticorpos , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Região Variável de Imunoglobulina , Imunoglobulinas/imunologia , Síndrome de Linfonodos Mucocutâneos/imunologia , Infecções Respiratórias/imunologia , Recombinação V(D)J , Diversidade de Anticorpos/genética , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/genética , Estudos de Casos e Controles , Regiões Determinantes de Complementaridade , Feminino , Humanos , Switching de Imunoglobulina , Região de Junção de Imunoglobulinas , Imunoglobulinas/genética , Masculino , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/genética , Fatores de Risco
15.
Front Pediatr ; 7: 310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428592

RESUMO

Background: The diagnosis of overlap syndrome involving systemic lupus erythematosus (SLE) and autoimmune hepatitis (AIH) is not easily established because of its similar clinical presentations and biochemical features to those of lupus hepatitis. The term overlap syndrome is usually used in the context of overlap of autoimmune hepatitis with PSC (primary sclerosing cholangitis) or PBC (primary biliary cholangitis). Few cases of AIH complicated by SLE have been reported in the literature, and the condition is even rarer in childhood. Case presentation: Here we report the case of a 16-year-old girl with SLE who initially presented with autoimmune (cholestatic) hepatitis. According to American Association for the Study of Liver Diseases practice guidelines, the diagnosis was made based on aggregated scores including female (+2); ALP:AST (or ALT) ratio <1.5(+2); elevated serum IgG level(+3); ANA > 1:80 (+3); negative hepatitis viral markers and drug history (+3, +1); average alcohol intake <25 g/day (+2); and histological interface hepatitis features (+3). She then developed a malar rash, ANA positivity, anti-double-stranded DNA (anti-dsDNA) antibodies, and a low complement level. She met 4 of 17 Systemic Lupus International Collaborating Clinics classification criteria (1) for SLE. Our patient responded very well to corticosteroid at an initial dose of methylprednisolone 40 mg Q12H for 4 days tapering to 1 mg/kg/day according to liver function test results and bilirubin level. No relapse occurred during the 3-year follow-up course. Conclusions: Overlapping of SLE and AIH should be suspected when children with SLE have impaired liver function or AIH patients present with a malar or other skin rash. Liver biopsy plays an important role in establishing the differential diagnosis of SLE with liver impairment or overlap with AIH. The prompt diagnosis and adequate further treatment plans can improve disease outcomes.

17.
Int J Mol Sci ; 19(6)2018 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29865262

RESUMO

Alternative therapies are needed to reduce the use of antibiotics and incidence of drug-resistant Salmonellosis. Previous studies have revealed important roles of statins in regulating innate immunity. Therefore, we investigated the effects of statins on innate immunity in Salmonella-infected intestinal epithelial cells (IECs), which are involved in mucosal innate immunity. SW480 cells and Akt siRNA- or vitamin D receptor (VDR) siRNA-transfected SW480 cells were infected by wild-type S. Typhimurium strain SL1344 in the presence or absence of statins. The mRNA or protein expression was analyzed by real-time quantitative PCR or western blot analysis, respectively. Simvastatin or fluvastatin caused IL-8 (interleukin-8) suppression, but increased hBD-2 mRNA expression in Salmonella-infected SW480 cells. Both statins enhanced phosphorylated Akt and VDR expressions. Akt or VDR knockdown by siRNA counteracted the suppressive effect of simvastatin on IL-8 expression, whereas VDR knockdown diminished the enhanced hBD-2 expression in Salmonella-infected SW480 cells. Therefore, we observed differential regulation of statins on inflammatory IL-8 and anti-microbial hBD-2 expressions in Salmonella-infected IECs via PI3K/Akt signaling and VDR protein expression, respectively. The enhanced activity of antimicrobial peptides by statins in Salmonella-infected IECs could protect the host against infection, and modulation of pro-inflammatory responses could prevent the detrimental effects of overwhelming inflammation in the host.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Indóis/farmacologia , Interleucina-8/metabolismo , Mucosa Intestinal/microbiologia , Salmonella typhimurium , Sinvastatina/farmacologia , beta-Defensinas/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Fluvastatina , Regulação da Expressão Gênica , Humanos , Interleucina-8/genética , Mucosa Intestinal/metabolismo , beta-Defensinas/genética
18.
Exp Biol Med (Maywood) ; 243(1): 13-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105510

RESUMO

Hepatic fibrosis was caused by a number of signaling pathways that damage liver integrity. We have previously shown that microRNA-29a (miR-29a) protects against liver fibrosis. Aberrant endoplasmic reticulum (ER) and autophagy function reportedly exaggerate hepatic disorders. The aim of this study was to characterize the biological influence of miR-29a on ER function in injured livers with bile duct ligation (BDL). We performed BDL on miR-29a transgenic mice (miR-29aTg) and wild-type mice to induce cholestatic liver injury. Rat T6 cells were transfected with miR-29a mimic and tunicamycin. Compared to the wild-type mice, the BDL deterioration of liver function in terms of total bilirubin, alanine transaminase, and aspartate transaminase activity in the miR-29aTg mice was significantly reduced. Affected livers in the miR-29aTg mice demonstrated a slight fibrotic matrix formation. miR-29a over-expression reduced the BDL disturbance of the expressions of inositol-requiring kinase 1alpha, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, spliced-X-box binding protein 1 (sXBP1), CCAAT/enhancer-binding protein homologous protein (CHOP), ULK, LC3BII, p62, and cleaved caspase-8, 9 and 3. In vitro, T6 cells exposed to tunicamycin by increasing abundances of CHOP, sXBP1, cleaved caspase-3, and LC3BII were diminished in the cell cultures transfected with the miR-29a mimic. On the other hand, we observed that miR-29a signaling protected liver tissues from BDL-mediated metabolic dysfunction and excessive fibrosis histopathology. This study provides new molecular insight into the miR-29a stabilization of ER integrity that slows the progression of cholestatic liver deterioration. Impact statement Long-term hepatic damage caused by hepatitis and cholestasis can accelerate fibrosis matrix over-production, which is a harmful process attributed to the dysregulation of a number of cellular and molecular events. The purpose of this study is to characterize the biological influence of miR-29a on endoplasmic reticulum (ER) function in bile duct ligation (BDL)-injured livers. To the best of our knowledge, this report is the first demonstration that miR-29a over-expression diminishes BDL provocation of ER stress (unfolded protein response, UPR) effector protein expression. This work also demonstrates that miR-29a decreased caspases protein expression in cholestatic livers, while an increase in miR-29a function reduced sXBP1 and CHOP expressions in T6 cells in mice. Analyses of this study highlight that controlling miR-29a signaling can serve as an innovative strategy in the future for microRNA regulation of ER homeostasis to combat cholestasis induction hepatic disorders.


Assuntos
Autofagia , Retículo Endoplasmático/patologia , Icterícia Obstrutiva/complicações , Cirrose Hepática/patologia , MicroRNAs/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos
19.
J Microbiol Immunol Infect ; 51(2): 166-173, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27590984

RESUMO

BACKGROUND/PURPOSE: Viral infections and innate immunity signaling, especially Toll-like receptor 7 (TLR7) have been implicated in the pathogenesis of biliary atresia (BA). Administration of rhesus rotavirus-type A to newborn Balb/c mice produces inflammatory obstruction of bile ducts, which resembles human BA. However, whether activation of TLR7 signaling plays a role in neonatal hepatobiliary injury remains to be investigated. METHODS: TLR7 agonist, imiquimod (R837), was intraperitoneally administered to Balb/c mice within 24 hours of birth and then every other day. Morphological and histological injuries of liver and gallbladder were examined at 2 weeks. Hepatic messenger RNA expression of TLR7 signaling was studied. Terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling staining was used to delineate hepatobiliary apoptosis upon TLR7 stimulation. RESULTS: TLR7 agonist, imiquimod, induced hypoplasia of the biliary system of neonatal Balb/c mice both in atrophic gallbladder and in paucity of intrahepatic bile ducts. There was significantly higher hepatic expression of TLR7 and downstream innate immunity-mediated interferon regulatory factor 7, interferon-α, and tumor necrosis factor-α. In addition, terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells in the liver were increased after injections of TLR7 agonist. CONCLUSION: The results demonstrate that TLR7 activation may trigger innate immunity pathways and induce apoptosis and hypoplasia of neonatal biliary trees in Balb/c mice. The novel findings give an implication of pathogenesis of infantile cholestasis, such as BA.


Assuntos
Atresia Biliar/patologia , Sistema Biliar/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/patologia , Vesícula Biliar/patologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Aminoquinolinas/farmacologia , Animais , Apoptose/fisiologia , Atresia Biliar/induzido quimicamente , DNA Nucleotidilexotransferase/genética , Modelos Animais de Doenças , Imiquimode , Fator Regulador 7 de Interferon/metabolismo , Interferon-alfa/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/biossíntese , Rotavirus/patogenicidade , Infecções por Rotavirus/patologia , Receptor 7 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Oncotarget ; 8(31): 51859-51868, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881695

RESUMO

Kawasaki disease (KD) is a form of systemic vasculitis. Regarding its pathogenesis, HAMP gene encoding hepcidin, which is significant for iron metabolism, has a vital function. In this study, we recruited a total of 381 KD patients for genotyping. Data from 997 subjects (500 subjects from cohort 1; 497 subjects from cohort 2) were used for analysis. Using TaqMan allelic discrimination, we determined five tag SNPs (rs916145, rs10421768, rs3817623, rs7251432, and rs2293689). Treatment outcome data related to such clinical phenotypes as coronary artery lesions (CAL), coronary artery aneurysms (CAA), and intravenous immunoglobulin (IVIG) effects were also collected. Furthermore, we measured plasma hepcidin levels with an enzyme-linked immunosorbent assay. We found that HAMP gene polymorphism (rs7251432, and rs2293689) was significantly correlated with KD risk and that plasma hepcidin levels both before and after IVIG treatment had a significantly positive correlation with length of hospital stays (R = 0.217, p = 0.046 and R = 0.381, p < 0.0001, respectively). In contrast, plasma hepcidin levels has a negative correlation with KD patients' albumin levels (R = -0.27, p < 0.001) prior to IVIG treatment. This study's findings indicate that HAMP might have a role in the disease susceptibility, as well as its expressions correlated length of hospital stays, and albumin levels in Taiwanese children with KD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...