Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 920: 148495, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663690

RESUMO

DEAD-box RNA helicases, a prominent subfamily within the RNA helicase superfamily 2 (SF2), play crucial roles in the growth, development, and abiotic stress responses of plants. This study identifies 146 DEAD-box RNA helicase genes (GhDEADs) and categorizes them into four Clades (Clade A-D) through phylogenetic analysis. Promoter analysis reveals cis-acting elements linked to plant responses to light, methyl jasmonate (MeJA), abscisic acid (ABA), low temperature, and drought. RNA-seq data demonstrate that Clade C GhDEADs exhibit elevated and ubiquitous expression across different tissues, validating their connection to leaf development through real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Notably, over half of GhDEADs display up-regulation in the leaves of virus-induced gene silencing (VIGS) plants of GhVIR-A/D (members of m6A methyltransferase complex, which regulate leaf morphogenesis). In conclusion, this study offers a comprehensive insight into GhDEADs, emphasizing their potential involvement in leaf development.


Assuntos
RNA Helicases DEAD-box , Regulação da Expressão Gênica de Plantas , Gossypium , Filogenia , Proteínas de Plantas , Gossypium/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia
2.
Plants (Basel) ; 12(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960109

RESUMO

Drought stress imposes severe constraints on crop growth and yield. The NAC transcription factors (TF) play a pivotal role in regulating plant stress responses. However, the biological functions and regulatory mechanisms of many cotton NACs have not been explored. In this study, we report the cloning and characterization of GhNAC2-A06, a gene encoding a typical cotton NAC TF. The expression of GhNAC2-A06 was induced by PEG treatment, drought stress, and ABA treatment. Furthermore, we investigated its function using the virus-induced gene silencing (VIGS) method. GhNAC2-A06 silenced plants exhibited a poorer growth status under drought stress conditions compared to the controls. The GhNAC2-A06 silenced cotton plants had a lower leaf relative water and chlorophyll content and a higher MDA content compared to the controls under the drought treatment. The levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activity in the GhNAC2-A06 silenced plants were found to be lower compared to the controls when exposed to drought stress. Additionally, the downregulation of the drought stress-related genes, GhSAP12-D07, GhNCED1-A01, GhLEA14-A11, GhZAT10-D02, GhPROT2-A05, GhABF3-A03, GhABF2-D05, GhSAP3-D07, and GhCPK1-D04, was observed in the GhNAC2-A06 silenced cotton. Together, our research reveals that GhNAC2-A06 plays a role in the reaction of cotton to drought stress by affecting the expression of genes related to drought stress. The data obtained from this study lay the theoretical foundation for further in-depth research on the biological function and regulatory mechanisms of GhNAC2-A06.

3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077287

RESUMO

N6-methyladenosine (m6A) is one of the most abundant internal modifications of mRNA, which plays important roles in gene expression regulation, and plant growth and development. Vir-like m6A methyltransferase associated (VIRMA) serves as a scaffold for bridging the catalytic core components of the m6A methyltransferase complex. The role of VIRMA in regulating leaf development and its related mechanisms have not been reported. Here, we identified and characterized two upland cotton (Gossypium hirsutum) VIRMA genes, named as GhVIR-A and GhVIR-D, which share 98.5% identity with each other. GhVIR-A and GhVIR-D were ubiquitously expressed in different tissues and relatively higher expressed in leaves and main stem apexes (MSA). Knocking down the expression of GhVIR genes by the virus-induced gene silencing (VIGS) system influences leaf cell size, cell shape, and total cell numbers, thereby determining cotton leaf morphogenesis. The dot-blot assay and colorimetric experiment showed the ratio of m6A to A in mRNA is lower in leaves of GhVIR-VIGS plants compared with control plants. Messenger RNA (mRNA) high-throughput sequencing (RNA-seq) and a qRT-PCR experiment showed that GhVIRs regulate leaf development through influencing expression of some transcription factor genes, tubulin genes, and chloroplast genes including photosystem, carbon fixation, and ribosome assembly. Chloroplast structure, chlorophyll content, and photosynthetic efficiency were changed and unsuitable for leaf growth and development in GhVIR-VIGS plants compared with control plants. Taken together, our results demonstrate GhVIRs function in cotton leaf development by chloroplast dependent and independent pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Adenosina/análogos & derivados , Cloroplastos/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Metilação , Metiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
4.
Front Plant Sci ; 12: 767667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759949

RESUMO

Multiple C2 domain and transmembrane region proteins (MCTPs) are a group of evolutionarily conserved proteins and show emerging roles in mediating protein trafficking and signaling transduction. Although, several studies showed that MCTPs play important roles during plant growth and development, their biological functions in cotton remain largely unknown. Here, we identify and characterize 33 GhMCTP genes from upland cotton (Gossypium hirsutum) and reveal the diverse expression patterns of GhMCTPs in various tissues. We also find that GhMCTP7, GhMCTP12, and GhMCTP17 are highly expressed in the main stem apex, suggesting their possible roles in shoot development. Through analyzing different cotton species, we discover plant heights are closely related to the expression levels of GhMCTP7, GhMCTP12, and GhMCTP17. Furthermore, we silence the expression of GhMCTP genes using virus-induced gene silencing (VIGS) system in cotton and find that GhMCTP7, GhMCTP12, and GhMCTP17 play an essential role in shoot meristem development. GhMCTPs interact with GhKNAT1 and GhKNAT2 and regulate meristem development through integrating multiple signal pathways. Taken together, our results demonstrate functional redundancy of GhMCTPs in cotton shoot meristem development and provide a valuable resource to further study various functions of GhMCTPs in plant growth and development.

5.
Plant Physiol Biochem ; 143: 83-93, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31491703

RESUMO

Ethylene insensitive 3 (EIN3), a key transcription factor in ethylene signal transduction, play important roles in plant stress signaling pathways. In this study, we isolated and characterized an EIN3-like gene from cotton (Gossypium hirsutum), designated as GhEIN3. GhEIN3 is highly expressed in vegetative tissues, and its expression is induced by 1-aminocyclopropane-1-carboxylic acid (ACC) and NaCl. Ectopic expression of GhEIN3 in Arabidopsis elevated plants' response to ethylene, which exhibit smaller leaves, more root hairs, shorter roots and hypocotyls. The germination rate, survival rate and root length of GhEIN3 transgenic plants were significantly improved compared to wild type under salt stress. GhEIN3 transgenic plants accumulated less H2O2 and malondialdehyde (MDA), while higher superoxide dismutase (SOD) and peroxidase (POD) activities were detected under salt stress. In addition, expression of several genes related to reactive oxygen species (ROS) pathway and ABA signaling pathway was increased in the GhEIN3 transgenic plants under salt stress. In contrast, virus-induced gene silencing (VIGS) of GhEIN3 in cotton enhanced the sensitivity of transgenic plants to salt stress, accumulating higher H2O2 and MDA and lower SOD and POD activities compared to control plants. Collectively, our results revealed that GhEIN3 might be involved in the regulation of plant response to salt stress by regulating ABA and ROS pathway during plant growth and development.


Assuntos
Gossypium/efeitos dos fármacos , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Malondialdeído/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/farmacologia
6.
Dev Cell ; 50(1): 90-101.e3, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31178399

RESUMO

Plants exhibit different flowering behaviors in response to variable photoperiods across a wide geographical range. Here, we identify MYC3, a bHLH transcription factor, and its cis-element form the long-sought regulatory module responsible for cis-regulatory changes at the florigen gene FLOWERING LOCUS T (FT) that mediate natural variation in photoperiodic flowering responses in Arabidopsis. MYC3 is stabilized by DELLAs in the gibberellin pathway to suppress FT through binding the ACGGAT motif and antagonizing CONSTANS (CO) activation. Changing photoperiods modulate the relative abundance of MYC3 and CO, thus determining either of them as the predominant regulator for FT expression under different day lengths. Cis-regulatory changes in the MYC3 binding site at FT are associated with natural variation in day-length requirement for flowering in Arabidopsis accessions. Our findings reveal that environmental and developmental signals converge at MYC3 suppression of FT, an elementary event underlying natural variation in photoperiodic flowering responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
New Phytol ; 217(2): 625-640, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105766

RESUMO

Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development.


Assuntos
Parede Celular/metabolismo , Fibra de Algodão , Gossypium/citologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Monossacarídeos/análise , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
8.
Sci Rep ; 7(1): 10118, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860559

RESUMO

TCP proteins are plant-specific transcription factors (TFs), and perform a variety of physiological functions in plant growth and development. In this study, 74 non-redundant TCP genes were identified in upland cotton (Gossypium hirsutum L.) genome. Cotton TCP family can be classified into two classes (class I and class II) that can be further divided into 11 types (groups) based on their motif composition. Quantitative RT-PCR analysis indicated that GhTCPs display different expression patterns in cotton tissues. The majority of these genes are preferentially or specifically expressed in cotton leaves, while some GhTCP genes are highly expressed in initiating fibers and/or elongating fibers of cotton. Yeast two-hybrid results indicated that GhTCPs can interact with each other to form homodimers or heterodimers. In addition, GhTCP14a and GhTCP22 can interact with some transcription factors which are involved in fiber development. These results lay solid foundation for further study on the functions of TCP genes during cotton fiber development.


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Sci Rep ; 7(1): 2788, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584307

RESUMO

Plant JAZ (Jasmonate ZIM-domain) proteins play versatile roles in multiple aspects of plant development and defense. However, little is known about the JAZ family in allotetraploid upland cotton (Gossypium hirsutum) so far. In this study, 30 non-redundant JAZ genes were identified in upland cotton through genome-wide screening. Phylogenetic analysis revealed that the 30 proteins in cotton JAZ family are further divided into five groups (I - V), and members in the same group share highly conserved motif structures. Subcellular localization assay demonstrated that GhJAZ proteins are localized in the cell nucleus. Quantitative RT-PCR analysis indicated that GhJAZs display different expression patterns in cotton tissues, and most of them could be induced by Jasmonic (JA). Furthermore, some GhJAZ genes are preferentially expressed in cotton ovules and fibers, and showed differential expression in ovules of wild type cotton and fiberless mutant (fl) during fiber initiation. GhJAZ proteins could interact with each other to form homodimer or heterodimer, and they also interacted with some JA signaling regulators and the proteins involved in cotton fiber initiation. Collectively, our data suggested that some GhJAZ proteins may play important roles in cotton fiber initiation and development by regulating JA signaling as well as some fiber-related proteins.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Sequência Conservada , Gossypium/metabolismo , Espaço Intracelular/metabolismo , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo
10.
Plant Physiol Biochem ; 108: 63-70, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27415132

RESUMO

Basic helix-loop-helix transcription factors (TFs), namely MYC2, MYC3, and MYC4, interact with Jasmonate Zim-domain proteins and are their direct targets. These TFs have been shown to function synergistically to control Arabidopsis growth and development. Our results showed similar MYC2, MYC3, and MYC4 expression patterns during Arabidopsis seed development, which remained relatively high during seed mid-maturation. MYC2, MYC3, and MYC4 acted redundantly in seed size, weight control, and in regulating seed storage protein accumulation. Triple mutants produced the largest seeds and single and double mutants' seeds were much larger than those of wild type. The weight of triple mutants' seeds was significantly higher than that of wild-type seeds, which was accompanied by an increase in seed storage protein contents. Triple mutants' seeds presented a marked decrease in 2S amounts relative to those in wild-type seeds. Liquid chromatography tandem mass spectra sequencing results indicated that both the relative abundance and the peptide number of CRA1 and CRU3 were greatly increased in triple mutants compared to wild type. The expression of 2S1-2S5 decreased and that of CRA1 and CRU3 increased in triple mutants relative to those in wild types during seed development, which might have contributed to the low 2S and high 12S contents in triple mutants. Our results contribute to understanding the function of MYC2, MYC3, and MYC4 on seed development, and provide promising targets for genetic manipulations of protein-producing crops to improve the quantity and quality of seed storage proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sementes/metabolismo , Transativadores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica de Plantas , Mutação , Sementes/genética , Sementes/crescimento & desenvolvimento , Transativadores/genética
11.
Physiol Plant ; 154(3): 420-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25534543

RESUMO

Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.


Assuntos
Arabidopsis/genética , Parede Celular/genética , Fibra de Algodão , Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xilema/genética , Xilema/metabolismo
12.
Plant Physiol Biochem ; 83: 134-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25137291

RESUMO

NAC proteins that compose of one large family of plant specific transcription factors (TF) play the important roles in many biological processes (such as morphogenesis, development, senescence and stress signal transduction). In this study, a gene (designated as GhXND1) encoding a NAC transcription factor was identified in cotton. Sequence analysis indicated that GhXND1 gene contains two introns inserted in its open reading frame (ORF). GhXND1 protein is localized in the cell nucleus, and displays the transactivation activity. GhXND1 transcripts were mainly detected in cotyledons, petals, roots, hypocotyls and stems, but little or no signals of GhXND1 expression were found in the other tissues. Ectopic expression of GhXND1 in Arabidopsis resulted in a reduction in number of xylem vessel cells and cell wall thickness of interfascicular fibers in the transgenic plants, compared with those of wild type. And expression of some cell wall biosynthesis-related genes was down-regulated in the GhXND1 transgenic plants. Collectively, the data presented in this study suggested that GhXND1 may be involved in regulation of plant xylem development.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/genética , Fatores de Transcrição/fisiologia , Xilema/metabolismo , Sequência de Aminoácidos , Genes de Plantas , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
13.
J Exp Bot ; 65(15): 4133-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24831118

RESUMO

In this study, the GhKNL1 (KNOTTED1-LIKE) gene, encoding a classical class II KNOX protein was identified in cotton (Gossypium hirsutum). GhKNL1 was preferentially expressed in developing fibres at the stage of secondary cell wall (SCW) biosynthesis. GhKNL1 was localized in the cell nucleus, and could interact with GhOFP4, as well as AtOFP1, AtOFP4, and AtMYB75. However, GhKNL1 lacked transcriptional activation activity. Dominant repression of GhKNL1 affected fibre development of cotton. The expression levels of genes related to fibre elongation and SCW biosynthesis were altered in transgenic fibres of cotton. As a result, transgenic cotton plants produced aberrant, shrunken, and collapsed fibre cells. Length and cell-wall thickness of fibres of transgenic cotton plants were significantly reduced compared with the wild type. Furthermore, overexpression and dominant repression of GhKNL1 in Arabidopsis resulted in a reduction in interfascicular fibre cell-wall thickening of basal stems of transgenic plants. Complementation revealed that GhKNL1 rescued the defective phenotype of Arabidopsis knat7 mutant in some extent. These data suggest that GhKNL1, as a transcription factor, participates in regulating fibre development of cotton.


Assuntos
Fibra de Algodão , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Gossypium/crescimento & desenvolvimento , Fenótipo , Desenvolvimento Vegetal , Proteínas de Plantas/isolamento & purificação , Ativação Transcricional
14.
Mol Biol Rep ; 41(7): 4369-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24566693

RESUMO

Low temperature, drought and salinity are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important proteins involved in response to abiotic stresses in plants. In this study, twenty-one CBF genes were identified in cotton (Gossypium hirsutum) by bioinformatic approach. The twenty-one CBF genes (named as GhCBF1--GhCBF21) were characterized to encode proteins that share high similarity with those plant cold stress-related CBF proteins, which contain the classic AP2 domain of 58 amino acid residues. Phylogenetic analysis revealed that the isolated cotton CBF genes can be classified into 4 groups: GhCBF I, GhCBF II, GhCBF III and GhCBF IV. RT-PCR analysis indicated that GhCBF genes were up-regulated in cotton plants under cold stress. Furthermore, four GhCBF genes were up-regulated in cotton under salinity and drought treatments. Our data provided valuable information for further exploring the roles of the CBF genes in cotton development and in response to cold stress.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Elementos de Resposta , Fatores de Transcrição/genética , Sequência de Aminoácidos , Temperatura Baixa , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Secas , Gossypium/classificação , Gossypium/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Salinidade , Alinhamento de Sequência , Estresse Fisiológico , Fatores de Transcrição/metabolismo
15.
Mol Biol Rep ; 41(5): 3191-200, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24469731

RESUMO

It is believed that hundreds of genes, including photosynthesis-related genes, are typically involved in plant response to aphid feeding. Up to now, however, it is little known on the relationship between the photosynthesis-related genes and plant response to herbivores. In this study, we identified a cotton photosynthesis-related gene (GhPSAK1) which belongs to PSI-PSAK family and encodes a putative protein of 162 amino acids. RT-PCR analysis revealed that GhPSAK1 transcripts in leaves were increased at 12-24 h, but decreased at 48-72 h after cotton aphid attack or wounding induction. Choice assay and no-choice assay demonstrated that overexpression of GhPSAK1 in Arabidopsis improved plant tolerance to green peach aphids (Myzus persicae). The defense response genes related to salicylic acid signaling pathway were enhanced in the GhPSAK1 overexpressing transgenic plants. In addition, the callose amount in transgenic Arabidopsis leaves was more than that of wild type. Contents of the soluble sugars and total amino acids were also altered in leaves of transgenic Arabidopsis plants. Activities of superoxide dismutase and peroxidase in transgenic leaves were higher than those of wild type. These results suggested that GhPSAK1 may be involved in regulation of cotton response and tolerance to aphid attack.


Assuntos
Afídeos , Resistência à Doença/genética , Gossypium/fisiologia , Fotossíntese , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Transdução de Sinais , Superóxido Dismutase/metabolismo
16.
Plant Mol Biol ; 82(4-5): 353-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625445

RESUMO

Proline-rich proteins contribute to cell wall structure of specific cell types and are involved in plant growth and development. In this study, a fiber-specific gene, GhPRP5, encoding a proline-rich protein was functionally characterized in cotton. GhPRP5 promoter directed GUS expression only in trichomes of both transgenic Arabidopsis and tobacco plants. The transgenic Arabidopsis plants with overexpressing GhPRP5 displayed reduced cell growth, resulting in smaller cell size and consequently plant dwarfs, in comparison with wild type plants. In contrast, knock-down of GhPRP5 expression by RNA interference in cotton enhanced fiber development. The fiber length of transgenic cotton plants was longer than that of wild type. In addition, some genes involved in fiber elongation and wall biosynthesis of cotton were up-regulated or down-regulated in the transgenic cotton plants owing to suppression of GhPRP5. Collectively, these data suggested that GhPRP5 protein as a negative regulator participates in modulating fiber development of cotton.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Prolina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
17.
Plant Physiol ; 161(3): 1278-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23349362

RESUMO

Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Gossypium hirsutum). Overexpression of GhFLA1 in cotton promoted fiber elongation, leading to an increase in fiber length. In contrast, suppression of GhFLA1 expression in cotton slowed down fiber initiation and elongation. As a result, the mature fibers of the transgenic plants were significantly shorter than those of the wild type. In addition, expression levels of GhFLAs and the genes related to primary cell wall biosynthesis were remarkably enhanced in the GhFLA1 overexpression transgenic fibers, whereas the transcripts of these genes were dramatically reduced in the fibers of GhFLA1 RNA interference plants. An immunostaining assay indicated that both AGP composition and primary cell wall composition were changed in the transgenic fibers. The levels of glucose, arabinose, and galactose were also altered in the primary cell wall of the transgenic fibers compared with those of the wild type. Together, our results suggested that GhFLA1 may function in fiber initiation and elongation by affecting AGP composition and the integrity of the primary cell wall matrix.


Assuntos
Fibra de Algodão , Gossypium/crescimento & desenvolvimento , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Western Blotting , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glucosídeos/farmacologia , Gossypium/citologia , Gossypium/efeitos dos fármacos , Gossypium/genética , Immunoblotting , Imuno-Histoquímica , Mucoproteínas/genética , Mucoproteínas/isolamento & purificação , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 43(7): 519-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21642274

RESUMO

Plant hybrid proline-rich proteins (HyPRPs) usually consist of an N-terminal signal peptide, a central proline-rich domain, and a conserved eight-cysteine motif C-terminal domain. In this study, one gene (designated as GhHyPRP4) encoding putative HyPRP was isolated from cotton cDNA library. Northern blot and quantitative reverse transcriptase-polymerase chain reaction analyses revealed that GhHyPRP4 was preferentially expressed in leaves. Under cold stress, GhHyPRP4 expression was significantly up-regulated in leaves of cotton seedlings. Using the genome walking approach, a promoter fragment of GhHyPRP4 gene was isolated from cotton genome. GUS (ß-glucuronidase) gene driven by GhHyPRP4 promoter was specifically expressed in leaves and cotyledons of the transgenic Arabidopsis thaliana. Furthermore, GUS expression in leaves was remarkably induced by cold stress. Overexpression of GhHyPRP4 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival rate upon treatment under -20°C for 60 h. These data suggested that GhHyPRP4 may be involved in plant response to cold stress during seedling development of cotton.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucuronidase/biossíntese , Gossypium/genética , Dados de Sequência Molecular , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Schizosaccharomyces/metabolismo , Plântula/metabolismo , Estresse Fisiológico/fisiologia
19.
Physiol Plant ; 141(1): 71-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21029107

RESUMO

Copper is vitally required for plants at low concentrations but extremely toxic for plants at elevated concentrations. Plants have evolved a series of mechanisms to prevent the consequences of the excess or deficit of copper. These mechanisms require copper-interacting proteins involved in copper trafficking. Blue copper-binding proteins (BCPs) are a class of copper proteins containing one blue copper-binding domain binding a single type I copper. To investigate the role of BCPs in plant development and in response to stresses, we isolated nine cDNAs encoding the putative blue copper-binding proteins (GhBCPs) from cotton (Gossypium hirsutum). Meanwhile, four corresponding genes (including GhBCP1-GhBCP4), which contain a single intron inserted in their conserved position, were isolated from cotton genome. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the nine GhBCP genes are differentially expressed in cotton tissues. Among them, GhBCP1 and GhBCP4 were predominantly expressed in fibers, while the transcripts of GhBCP2 and GhBCP3 were accumulated at relatively high levels in fibers. These four genes were strongly expressed in early fiber elongation, but dramatically declined with further fiber development. In addition, these GhBCP genes were upregulated in fibers by Cu(2+) , Zn(2+) , high-salinity and drought stresses, but downregulated in fibers by Al(3+) treatment. Overexpression of GhBCP1 and GhBCP4 in yeast (Schizosaccharomyces pombe) significantly increased the cell growth rate under Cu(2+) , Zn(2+) and high-salinity stresses. These results suggested that these GhBCPs may participate in the regulation of fiber development and in response to high-salinity and heavy metal stresses in cotton.


Assuntos
Proteínas de Transporte/genética , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Metais Pesados/toxicidade , Salinidade , Estresse Fisiológico/genética , Sequência de Aminoácidos , Proteínas de Transporte/química , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Manitol/farmacologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Análise de Sequência de Proteína , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
20.
J Exp Bot ; 61(1): 41-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19861654

RESUMO

To investigate whether the high expression levels of actin-depolymerizing factor genes are related to pollen development, three GhADF genes (cDNAs) were isolated and characterized in cotton. Among them, GhADF6 and GhADF8 were preferentially expressed in petals, whereas GhADF7 displayed the highest level of expression in anthers, revealing its anther specificity. The GhADF7 transcripts in anthers reached its peak value at flowering, suggesting that its expression is developmentally-regulated in anthers. The GhADF7 gene including the promoter region was isolated from the cotton genome. To demonstrate the specificity of the GhADF7 promoter, the 5'-flanking region, including the promoter and 5'-untranslated region, was fused with the GUS gene. Histochemical assays demonstrated that the GhADF7:GUS gene was specifically expressed in pollen grains. When pollen grains germinated, very strong GUS staining was detected in the elongating pollen tube. Furthermore, overexpression of GhADF7 gene in Arabidopsis thaliana reduced the viable pollen grains and, consequently, transgenic plants were partially male-sterile. Overexpression of GhADF7 in fission yeast (Schizosaccharomyces pombe) altered the balance of actin depolymerization and polymerization, leading to the defective cytokinesis and multinucleate formation in the cells. Given all the above results together, it is proposed that the GhADF7 gene may play an important role in pollen development and germination.


Assuntos
Fatores de Despolimerização de Actina/genética , Actinas/metabolismo , Flores/citologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Fatores de Despolimerização de Actina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Divisão Celular , Sobrevivência Celular , Citoesqueleto/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Perfilação da Expressão Gênica , Germinação , Glucuronidase/metabolismo , Gossypium/citologia , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...