Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771407

RESUMO

The utilization of fluorescent quantum dots (FL QDs) has gained significant traction in the realm of antibiotic detection, owing to their exceptional FL properties and versatility. Various types of QDs have been tailored to exhibit superior FL characteristics, employing diverse capping agents such as metals, surfactants, polymers, and biomass to protect and stabilize their surfaces. In their evolution, FL QDs have demonstrated both "turn-off" and "turn-on" mechanisms in response to the presence of analytes, offering promising avenues for biosensing applications. This review article provides a comprehensive overview of the recent advancements in antibiotic detection utilizing FL QDs as biosensors. It encompasses an extensive examination of different types of FL QDs, including carbon, metal, and core-shell QDs, deployed for the detection of antibiotics. Furthermore, the synthesis methods employed for the fabrication of various FL QDs are elucidated, shedding light on the diverse approaches adopted in their preparation. Moreover, this review delves into the intricate sensing mechanisms underlying FL QDs-based antibiotic detection. Various mechanisms, such as photoinduced electron transfer, electron transfer, charge transfer, Forster resonance energy transfer, static quenching, dynamic quenching, inner filter effect, hydrogen bonding, and aggregation-induced emission, are discussed in detail. These mechanisms provide a robust scientific rationale for the detection of antibiotics using FL QDs, showcasing their potential for sensitive and selective sensing applications. Finally, the review addresses current challenges and offers perspectives on the future improvement of FL QDs in sensing applications. Insights into overcoming existing limitations and harnessing emerging technologies are provided, charting a course for the continued advancement of FL QDs-based biosensing platforms in the field of antibiotic detection.

2.
Anal Methods ; 16(8): 1261-1271, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323472

RESUMO

A fluorescence probe based on iron oxide quantum dots (IO-QDs) was synthesized using the hydrothermal method for the determination of tetracycline (TCy) and ciprofloxacin (CPx) in aqueous solution. The IO-QDs were characterized using high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (P-XRD), vibrating sample magnetometry (VSM), and Fourier-transform infrared spectroscopy (FTIR). The as-prepared IO-QDs are fluorescent, stable, and with a fluorescence quantum yield (QY) of 9.8 ± 0.12%. The fluorescence of IO-QDs was observed to be quenched and enhanced in the presence of TCy and CPx, respectively. The fluorescence intensity ratio shows linearity at concentrations from 1-100 µM and 5-100 µM for TCy and CPx, respectively; the detection limit for TCy and CPx was estimated to be 0.71 µM and 1.56 µM, respectively. The proposed method was also successfully utilized in the spiked samples of drinking water and honey with good recoveries. The method offered convenience, rapid detection, high sensitivity, selectivity, and cost-efficient alternative options for the determination of TCy and CPx in real samples.


Assuntos
Antibacterianos , Compostos Férricos , Pontos Quânticos , Ciprofloxacina , Pontos Quânticos/química , Tetraciclina
3.
Adv Colloid Interface Sci ; 325: 103115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422725

RESUMO

The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Pontos Quânticos , Carbono/química , Prata/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Nanocompostos/química
4.
Mikrochim Acta ; 190(6): 226, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198413

RESUMO

The fabrication of iron oxide quantum dots (IO-QDs) modified with glutamic acid (Glu) under controllable conditions is reported. The IO-QDs have been characterized by transmission electron microscopy, spectrofluorometry, powder X-ray diffraction, vibrating sample magnetometry, UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The IO-QDs exhibited good stability towards irradiation, temperature elevations, and ionic strength, and the quantum yield (QY) of IO-QDs was calculated to be 11.91 ± 0.09%. The IO-QDs were furtherly measured at an excitation wavelength of 330 nm with emission maxima at 402 nm, which were employed to detect tetracycline (TCy) antibiotics, including tetracycline (TCy), chlortetracycline (CTCy), demeclocycline (DmCy), and oxytetracycline (OTCy) in biological samples. The results indicated that TCy, CTCy, DmCy, and OTCy in urine samples show a dynamic working range between 0.01 and 80.0 µM; 0.01 and 1.0 µM; 0.01 and 10 µM; and 0.04 and 1.0 µM, respectively, with detection limits of 7.69 nM, 120.23 nM, 18.20 nM, and 67.74 nM, respectively. The detection was not interfered with by the auto-fluorescence from the matrices. In addition, the obtained recovery in real urine samples suggested that the developed method could be used in practical applications. Therefore, the current study has prospect to develop an easy, fast, eco-friendly, and efficient new sensing method for detecting tetracycline antibiotics in biological samples.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Ácido Glutâmico , Tetraciclina , Antibacterianos
5.
RSC Adv ; 13(10): 6422-6432, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845584

RESUMO

In this study, new nitrogen-doped carbon dots (N-CDs) were prepared by utilizing rambutan seed waste and l-aspartic acid as dual precursors (carbon and nitrogen sources) through a hydrothermal treatment method. The N-CDs showed blue emission in solution under UV light irradiation. Their optical and physicochemical properties were examined via UV-vis, TEM, FTIR spectroscopy, SEM, DSC, DTA, TGA, XRD, XPS, Raman spectroscopy, and zeta potential analyses. They showed a strong emission peak at 435 nm and excitation-dependent emission behavior with strong electronic transitions of C[double bond, length as m-dash]C/C[double bond, length as m-dash]O bonds. The N-CDs exhibited high water dispersibility and great optical properties in response to some environmental conditions such as heating temperature, light irradiation, ionic strength, and storage time. They have an average size of 3.07 nm and good thermal stability. Owing to their great properties, they have been used as a fluorescent sensor for Congo red dye. The N-CDs selectively and sensitively detected Congo red dye with a detection limit of 0.035 µM. Moreover, the N-CDs were utilized to detect Congo red in tap and lake water samples. Thus, rambutan seed waste was successfully converted into N-CDs and these functional nanomaterials are promising for use in important applications.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121453, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667139

RESUMO

In this work, a simple, easy and selective method for sensing lysine in an acidic medium was developed based on fluorescent iron oxide quantum dots (IO QDs). IO QDs using the hydrothermal method were prepared with different conditions (concentration of NPs, amount of citric acid, heating time, heating temperature, and total volume in the hydrothermal reactor) where iron oxide nanoparticles (IO NPs) were used as the starting materials. TEM, FTIR, UV-Vis Spectrometry, fluorescence spectrometry, Powder XRD, VSM were used to characterize the as-prepared IO QDs. The surface of the IO QDs contained -OH, -COO-, and other functional groups that acted as a bridge to bind the IO QDs nanoprobe with the surrounding analytes. Under acidic conditions (pH 3.0), IO QDs exhibited a rapid and interference-free fluorescence enhancement behavior after adding lysine within 2 min at room temperature, whereas other amino acids had no effect on IO QDs fluorescence. Therefore, the IO QDs prepared in this study have shown potential in lysine sensing applications. The results showed that the relative FL intensity was linear with lysine concentration in the range of 1-100 µM and had a detection limit of 0.66 µM. This proposed method has high selectivity for lysine over other amino acids, and the developed methods were used in real sample with good recoveries. Under relatively acidic conditions, a specific and fast lysine interaction was observed, resulting in the successful of IO QDs as the fluorescent probe for rapid and interference-free lysine assessment in dairy products.


Assuntos
Pontos Quânticos , Laticínios , Compostos Férricos , Corantes Fluorescentes/química , Lisina , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
7.
Materials (Basel) ; 14(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072432

RESUMO

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs' growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.

8.
Phys Chem Chem Phys ; 23(16): 10108-10117, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876156

RESUMO

The heterogeneous oxidation reaction of single aqueous ascorbic acid (AH2) aerosol particles with gas-phase ozone was investigated in this study utilizing aerosol optical tweezers with Raman spectroscopy. The measured liquid-phase bimolecular rate coefficients of the AH2 + O3 reaction exhibit a significant pH dependence, and the corresponding values at ionic strength 0.2 M are (3.1 ± 2.0) × 105 M-1 s-1 and (1.2 ± 0.6) × 107 M-1 s-1 for pH ≈ 2 and 6, respectively. These results measured in micron-sized droplets are in agreement with those from previous bulk measurements, indicating that the observed aerosol reaction kinetics can be solely explained by liquid phase diffusion and AH2 + O3 reaction. Furthermore, the results indicate that high ionic strengths could enhance the liquid-phase rate coefficients of the AH2 + O3 reaction. The results also exhibit a negative ozone pressure dependence that can be rationalized in terms of a Langmuir-Hinshelwood type mechanism for the heterogeneous oxidation of AH2 aerosol particles by gas-phase ozone. The results of the present work imply that in acidified airway-lining fluids the antioxidant ability of AH2 against atmospheric ozone will be significantly suppressed.

9.
Biosensors (Basel) ; 10(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560540

RESUMO

Carbon dots (CDs) are a new cluster of carbon atoms with particle size less than 10 nm. CDs also exhibit interesting fluorescence (FL) properties. CDs are attractive because of their fascinating characteristics including low toxicity, good water solubility, and tremendous biocompatibility. Recently, CDs have been investigated as biosensors for numerous target analytes. Meanwhile, the utilization of cheap and renewable natural resources not only fulfills the pressing requirement for the large-scale synthesis of CDs but also encourages the establishment of sustainable applications. The preparation of CDs using natural resources, i.e., plants, offers several advantages as it is inexpensive, eco-friendly, and highly available in the surroundings. Plant parts are readily available natural resources as the starting materials to produce CDs with different characteristics and attractive applications. Several review articles are now available covering the synthesis, properties, and applications of CDs. However, there is no specific and focused review literature discussing plant part-derived CDs for biosensing applications. To handle this gap, we provide a review of the progress of CDs derived from various plant parts with their synthesis methods, optical properties, and biosensing applications in the last five years. We highlight the synthesis methods and then give an overview of their optical properties and applications as biosensors for various biomolecules and molecules in biological samples. Finally, we discuss some future perspectives for plant part-derived CDs for better material development and applications.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Componentes Aéreos da Planta/química , Pontos Quânticos/química , Fluorescência , Tamanho da Partícula , Propriedades de Superfície
10.
Sensors (Basel) ; 19(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744145

RESUMO

In this study, a simple and green hydrothermal treatment was performed to prepare nitrogen-doped carbon dots (NCDs) from Averrhoa carambola (AC) fruit extract as a carbon precursor and L-arginine (Arg) as a nitrogen dopant. The AC-NCDs were characterized by UV light, fluorescence spectroscopy, transmission electron microscopy, FTIR spectroscopy, Raman spectroscopy, UV-vis spectroscopy, and zeta potential analyzer. The AC-NCDs were spherical and the average diameter was estimated to be 6.67 nm. The AC-NCDs exhibited the maximum emission intensity at 446 nm with 360 nm excitation wavelength. The fluorescence quenching behavior of AC-NCDs after interacting with methyl orange (MO) dye was studied. The interaction of AC-NCDs and MO was achieved within 3 min and the fluorescence quenching was maintained to a fixed value even after 30 min. The linearity was obtained in the range of 1 to 25 µM MO with a 0.30 µM detection limit. Furthermore, the pH values affected the quenching behavior of the AC-NCDs/MO system where the interaction mechanisms were driven by the electrostatic interaction, π-π interaction, inner filter effect, and energy transfer. The pH 5 maintained higher quenching efficiency while other pH values slightly decreased the quenching efficiency. Incoming applications, the AC-NCDs can be used in various important fields, especially for environmental protection.


Assuntos
Averrhoa/química , Compostos Azo/isolamento & purificação , Técnicas Biossensoriais , Pontos Quânticos/química , Compostos Azo/química , Carbono/química , Corantes Fluorescentes/química , Frutas/química , Limite de Detecção , Microscopia Eletrônica de Transmissão , Nitrogênio , Extratos Vegetais/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
11.
ACS Omega ; 4(13): 15382-15392, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572837

RESUMO

Recently, synthesis, characterization, and application of carbon dots have received much attention. Natural products are the effectual carbon precursors to synthesize carbon dots with fascinating chemical and physical properties. In this study, the fluorescent sensor of carbon dots derived from cranberry beans without any functionalization and modification was developed. The carbon dots were prepared with a cheap, facile, and green carbon precursor through a hydrothermal treatment method. The synthetic process was toxic chemical-free, convenient, and environmentally friendly. To find the optimized synthetic conditions, the temperature, heating time duration, and carbon precursor weight were evaluated. The prepared carbon dots were characterized by UV light, transmission electron microscopy, Raman, Fourier transform infrared, UV-vis, and fluorescence spectroscopy. The resulting carbon dots exhibit stable fluorescence with a quantum yield of approximately 10.85%. The carbon dots emitted the broad fluorescence emission range between 410 and 540 nm by changing the excitation wavelength and were used for the detection of Fe3+ ions at the excitation of 380 nm. It is found that Fe3+ ions induced the fluorescence intensity quenching of the carbon dots stronger than other heavy metals and the Fe3+ ion detection can be achieved within 3 min. Spectroscopic data showed that the obtained carbon dots can detect Fe3+ ions within the wide concentration range of 30-600 µM with 9.55 µM detection limit.

12.
ACS Omega ; 3(3): 3340-3347, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458589

RESUMO

This study adopts a simple but facile process for preparing silver-doped magnetic nanoparticles by the spontaneous oxidation-reduction/coprecipitation method. The preparation can be achieved in one pot with a single step, and the prepared silver-doped magnetic nanoparticles were utilized as nanocatalysts for the reduction of o-nitroaniline. Utilizing the magnetic characteristics of the prepared nanoparticles, the catalytic reactions can be carried out under quasi-homogeneous condition and the nanocatalysts can be easily collected after the conversion is achieved. It can be revealed from the results that the morphologies and the composition of the prepared silver-doped magnetic nanoparticles can be adjusted by changing the conditions during the production, which affects the efficacy of the catalysis. In addition, the catalysis efficiency is also controlled by the pH, temperature, and the amounts of nanocatalysts used during the catalytic reaction. Finally, the silver-doped magnetic nanocatalysts prepared in this study own the advantages of easy preparation, room-temperature catalysis, high conversion ability, and recyclability, which make them more applicable in real utilities.

13.
ACS Appl Mater Interfaces ; 8(51): 35634-35640, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27966858

RESUMO

An evanescent wave infrared chemical sensor was developed to selectively detect volatile amines with heterocyclic or phenyl ring. To achieve this goal, a rhenium-based metallacycle with a "molecular-trap" structure was designed and synthesized as host molecules to selectively trap amines with heterocyclic or phenyl ring through Re-amine and π-π interactions. To explore the trapping properties of the material, a synthesized Re-based molecular trap was treated on an IR sensing element, and wide varieties of volatile organic compounds (VOCs) were examined to establish the selectivity for detection of amines. Based on the observed IR intensities, the Re-based molecular trap favors interaction with amines as evidenced by the variation of absorption bands of the Re molecular trap. With extra π-π interaction force, molecules, such as pyridine and benzylamine, could be detected. After optimization of the parameters for IR sensing, a rapid response in the detection of pyridine was observed, and the linear ranges were generally up to 10 mg/L with a detection limit around 5.7 µg/L. In the presence of other VOCs, the recoveries in detection of pyridine were all close to 100%.

14.
Artigo em Inglês | MEDLINE | ID: mdl-27179295

RESUMO

Nanonized noble metal composites have been known for their excellent catalytic properties. However, the mechanism and intermediates formed on the surfaces of nanocatalysts during catalysis are speculated with mostly insufficient evidence. In this study, to obtain further understanding of the roles of noble metal nanocatalysts in a catalytic reaction, surface-enhanced Raman scattering (SERS) was used to monitor the surfaces of silver (Ag) nanocatalysts. Furthermore, UV-Vis spectrometry was used to trace the concentration variations of reactants and products in bulk solutions, thereby correlating the variations of the Ag nanocatalyst surfaces with those in the bulk solutions. Nanonized Ag porous-glass hybrid composites were prepared by reducing naked Ag nanoparticles on porous-glass filter plates and were used as catalysts for nitroanilines reduction. The complete process was monitored using SERS and UV-Vis spectrometry simultaneously. The results indicated that the reactant and product molecules adsorbed on the Ag nanocatalysts can reach equilibrium, and the equilibrium is affected by the reaction conditions, including reducing agent concentration, pH of the reaction system, and temperature. In addition, the reduction of reactants in the bulk solutions is also related to the behavior of Ag nanocatalyst surfaces. Furthermore, Ag nanocatalysts can act as electron relays even if their surfaces are occupied by reactants and products. Analyzing the collected SERS and UV-Vis spectra can provide a new insight into Ag nanoparticle catalysis, and the role of Ag nanocatalysts can be further comprehended.

15.
Phys Chem Chem Phys ; 17(6): 4268-76, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25572301

RESUMO

A simple one-step process was adopted to fabricate anisotropic gold nanoassemblies. Evaporation-assisted nanoparticle assembly at the meniscus was maintained in this regard. Scanning electron microscopy confirmed that the constituent nanoparticles of the anisotropic gold nanoassembly are neither in physical contact nor agglomerated; instead, they are separated by a small interparticle gap. Crystal violet was adsorbed on the anisotropic gold nanoassembly, and a large enhancement (several orders of magnitude) in surface-enhanced Raman scattering (SERS) was observed. The assembly was thus proved to be highly SERS-active. Such an anisotropic gold nanoassembly allowed polarization dependent and polarization selective SERS experiments to be carried out. Inhomogeneous SERS and surface plasmon resonance distribution were observed along the assembly. Polarization-dependent SERS enhancement reached its highest value at in-plane polarization to the long axis, whereas polarization-selective SERS characteristics at the same spatial position showed uniform enhancement. Fluorescence emission accompanied with SERS signals was also characterized. Polarization-dependent fluorescence was enhanced at in-plane polarization to the long axis, whereas polarization-selective fluorescence was not enhanced. The experimental results were correlated and explained with three-dimensional finite definite time domain simulations as well. Such interstitial-limited gold nanoassembly provides means to realize polarized SERS characteristics for ensemble SERS measurements, which are important not only for the application-oriented fabrication of SERS-active substrates but also for understanding their feasibility in those applications.

16.
Talanta ; 85(1): 63-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21645670

RESUMO

Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 µg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified.


Assuntos
Rênio/química , Compostos Orgânicos Voláteis/análise , Sítios de Ligação , Éteres de Coroa , Espectrofotometria Infravermelho
17.
Appl Spectrosc ; 64(10): 1100-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20925979

RESUMO

In this study, surface-enhanced Raman scattering (SERS) in combination with a heat-induced sensing technique has been applied for investigating molecular orientations of glutathione molecules adsorbed on silver colloidal nanoparticles under different chemical environments, which has enabled us to further study how glutathione molecules are adsorbed on the silver surfaces. Factors that may affect the configurations of glutathione molecules adsorbed on the silver nanocolloids have been investigated. By observing the relative enhancement factors of SERS bands due to individual functional groups contributed from different terminals, the affinity between the different functional groups of glutathione and the silver surfaces under different conditions has been sorted and the orientations of glutathione molecules adsorbed on the silver surfaces have been investigated.

18.
Analyst ; 135(9): 2372-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668743

RESUMO

Protein detection using surface-enhanced Raman scattering (SERS) usually requires electrolytes to yield an enhanced SERS signal. However, the adsorption mechanism of electrolyte and protein to Ag colloid is not yet clearly understood. In this work, we have investigated co-adsorption of NO(3)(-) and lysozyme to Ag colloid using SERS. Three experimental factors including concentration of lysozyme (10(-5) and 10(-6) M), concentration of NO(3)(-) (0, 1, 2, 3 and 5 mM) and drying temperature (25 and 100 degrees C) have been studied. The results have shown that the co-adsorption of the adsorbates (lysozyme and NO(3)(-)) on a SERS substrate and the non-absorption of NO(3)(-) on the substrate can be controlled by using different experimental conditions. The co-adsorption manner of lysozyme and NO(3)(-) is consistent with the mechanism of double-layer adsorbates when a protein adsorbs on a solid/liquid interface. The variation in protein conformation, especially the main-chain conformation, seems to affect the adsorption manner of the adsorbates. It has been found that the final adsorption result is not affected by the addition sequence of lysozyme and NO(3)(-) during the sample preparation.


Assuntos
Coloides/química , Eletrólitos/química , Muramidase/análise , Prata/química , Análise Espectral Raman/métodos , Adsorção , Nitratos/química , Espectrofotometria Ultravioleta , Temperatura
19.
Analyst ; 134(12): 2468-74, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19918619

RESUMO

In this study, a new application method for SERS named "reversed reporting agent" method is proposed for selective detection of biomolecules with a thiol group. In this method reporting agents such as rhodamine 6G (R6G) are capped on surfaces of silver colloidal nanoparticles. Analytes having a thiol group will replace the positions of reporting agents due to the strong interactions between silver and the thiol group, and then the SERS intensity of the reporting agents will be reduced. By monitoring the difference in the SERS intensity of reporting agents before and after the replacement of analytes, the concentration of the analytes can be estimated. To demonstrate the feasibility of this proposed method, glutathione was used as the analyte and R6G, crystal violet (CV), and thiacyanine (TC) were employed as the reporting agents, and factors that affect the capability of the determination of glutathione were investigated. The results indicate that R6G is the most suitable reporting agent, and the concentration of the reporting agents affects the sensitivity and selectivity of glutathione determination. Under the optimal conditions, the detection of glutathione can be finished within 20 minutes and the detection limit of ca. 1 microM can be achieved. Furthermore, the proposed method holds specific selectivity towards glutathione, which means it has possible practical applications.


Assuntos
Glutationa/química , Análise Espectral Raman/métodos , Coloides , Nanopartículas Metálicas , Estrutura Molecular , Sensibilidade e Especificidade , Prata/química , Soluções , Água/química
20.
Phys Chem Chem Phys ; 11(34): 7484-90, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19690723

RESUMO

This paper reports the characteristics of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) using a unique SERS-active substrate comprised of a single layer and a double layer of two-dimensional (2D) gold nanostructure. Colloidal gold nanoparticles were immobilized on a glass substrate and a multi-purpose experimental setup was adopted to obtain surface plasmon resonance (SPR), SERS and SEF on a single platform. Inhomogeneous intensity distribution was observed in correlated images of SPR and SERS. Several laser lines were used as excitation sources for further SERS measurements. Higher SERS intensities were observed with longer wavelength excitations at the same spatial position. Fluorescence measurements were carried out using 514 nm line and SEF images were obtained using the same sample. Fluorescence emissions were found to be enhanced in the presence of 2D gold nanostructure. A series of SERS spectra were recorded by conducting ensemble SERS measurements at a periodic interval of 2 microm, crossing bare substrates, the single layer and the double layer of gold nanostructure. The double layer provides higher enhancement in SERS than that of the single layer. Polarization-selective SERS measurements obtained at the single layer and double layer showed a clear difference in their dispersions. SERS intensities of the analytes adsorbed at the single layer were fitted well with cos(4)theta dependence; however, for the double layer, the relationship was quite uncertain.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Coloides/química , Fluorescência , Análise Espectral Raman , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...