Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2300804, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691014

RESUMO

The practical application of aqueous zinc-ion batteries (AZIBs) is limited by serious side reactions, such as the hydrogen evolution reaction and Zn dendrite growth. Here, the study proposes a novel adoption of a biodegradable electrolyte additive, γ-Valerolactone (GVL), with only 1 vol.% addition (GVL-to-H2 O volume ratio) to enable a stable Zn metal anode. The combination of experimental characterizations and theoretical calculations verifies that the green GVL additive can competitively engage the solvated structure of Zn2+ via replacing a H2 O molecule from [Zn(H2 O)6 ]2+ , which can efficiently reduce the reactivity of water and inhibit the subsequent side reactions. Additionally, GVL molecules are preferentially adsorbed on the surface of Zn to regulate the uniform Zn deposition and suppress the Zn dendrite growth. Consequently, the Zn anode exhibits boosted stability with ultralong cycle lifespan (over 3500 h) and high reversibility with 99.69% Coulombic efficiency. The Zn||MnO2 full batteries with ZnSO4 -GVL electrolyte show a high capacity of 219 mAh g-1 at 0.5 A g-1 and improved capacity retention of 78% after 550 cycles. This work provides inspiration on bio-based electrolyte additives for aqueous battery chemistry and promotes the practical application of AZIBs.

2.
Front Chem ; 10: 990548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034658

RESUMO

Mn3O4 powders with nanometer size are successfully synthesized by a simple one-step method via flame spray pyrolysis. The precursor droplet is generated by heating under high temperature flame with fixed flow rate, and the exothermic reaction is induced to form nanosized Mn3O4 powders. When used as anode material for lithium-ion battery, the Mn3O4 exhibits good cycling capacity and rate performance. It delivers a specific capacity of 1,182 mA h g-1 over 110 cycles at a current density of 200 mA g-1, and has a high capacity of 140 mA h g-1 at 5,000 mA g-1.

3.
Chemphyschem ; 23(17): e202200106, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35654748

RESUMO

The binder is an indispensable battery component that maintains the integrity of the electrode. Polyvinylidene fluoride (PVDF) is most commonly used as a binder in rechargeable batteries; however, it is associated with the toxic and expensive N-methyl-2-pyrrolidone organic solvent. Here, through the cross-linking of sodium alginate (SA) with metal cations, a high-performance hydrogel binder is developed that maintains the stability of MnO2 cathodes in an aqueous electrolyte. Owing to the strong adhesion, high hydrophilicity, and good mechanical stability resulting from the strong bonding of Ca2+ with SA, a commercial microsized MnO2 cathode with a Ca-SA binder delivered a capacity above 300 mAh/g at 1 C, which was larger than those of Mn-SA and Zn-SA (∼200 mAh/g) and PVDF (∼150 mAh/g) binders, and a capacity of 250 mAh/g at 3 C for over 200 cycles. These encouraging results could unlock the enormous potential of aqueous binders for practical applications in aqueous batteries.

4.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 2): o119, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24764848

RESUMO

The title mol-ecule, C18H21Cl2NO3S2, contains one chiral carbon center and the absolute sterochemistry has been confirmed as as R. An intra-molecular N-H⋯O hydrogen bond occurs and the dihedral angle between the benzene rings is 64.5 (1)°. In the crystal, the mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming a zigzag chain structure extending along the c-axis direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...