Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; : e13679, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801100

RESUMO

Uncovering mechanisms of endogenous regeneration and repair through resident stem cell activation will allow us to develop specific therapies for injuries and diseases by targeting resident stem cell lineages. Sox9+ stem cells have been reported to play an essential role in acute kidney injury (AKI). However, a complete view of the Sox9+ lineage was not well investigated to accurately elucidate the functional end state and the choice of cell fate during tissue repair after AKI. To identify the mechanisms of fate determination of Sox9+ stem cells, we set up an AKI model with prostaglandin E2 (PGE2) treatment in a Sox9 lineage tracing mouse model. Single-cell RNA sequencing (scRNA-seq) was performed to analyse the transcriptomic profile of the Sox9+ lineage. Our results revealed that PGE2 could activate renal Sox9+ cells and promote the differentiation of Sox9+ cells into renal proximal tubular epithelial cells and inhibit the development of fibrosis. Furthermore, single-cell transcriptome analysis demonstrated that PGE2 could regulate the restoration of lipid metabolism homeostasis in proximal tubular epithelial cells by participating in communication with different cell types. Our results highlight the prospects for the activation of endogenous renal Sox9+ stem cells with PGE2 for the regenerative therapy of AKI.

2.
Redox Biol ; 71: 103116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479222

RESUMO

Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.


Assuntos
Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
3.
J Youth Adolesc ; 53(3): 595-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183533

RESUMO

The decline of curiosity during adolescence has received increasing concerns in education. The present study aimed to identify the key factors in the environment that promote young people's curiosity from a needs-based ecological perspective, focusing on family and school. To enable a better understanding of the developmental effects, this study compared two age groups: 10-year-olds and 15-year-olds. A total of 5482 Finnish students (3034 aged 10 and 2448 aged 15; 48% female and 51% male) from the OECD Survey on Social-emotional Skills participated in the study, and their family and school factors related to basic psychological needs (autonomy, competence, relatedness) were assessed through surveys. Hierarchical Linear Modeling results revealed that: (1) contrary to the expectations, factors that support competence and relatedness facilitated youth curiosity to a greater extent than factors that support autonomy; (2) positive relationships with teachers were more beneficial for curiosity among older youth than younger youth; whereas, a sense of belonging at school was the most important factor for younger youth's curiosity. These findings have significant implications for promoting curiosity in general as well as during different age periods.


Assuntos
Comportamento Exploratório , Estudantes , Humanos , Masculino , Feminino , Adolescente , Criança , Estudantes/psicologia , Escolaridade , Instituições Acadêmicas , Habilidades Sociais
4.
Antioxidants (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001822

RESUMO

Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.

5.
Sci Adv ; 9(48): eadi9967, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019911

RESUMO

Cell therapy by autologous mesenchymal stem cells (MSCs) is a clinically acceptable strategy for treating various diseases. Unfortunately, the therapeutic efficacy is largely affected by the low quality of MSCs collected from patients. Here, we showed that the gene expression of MSCs from patients with diabetes was differentially regulated compared to that of MSCs from healthy controls. Then, MSCs were genetically engineered to catalyze an NO prodrug to release NO intracellularly. Compared to extracellular NO conversion, intracellular NO delivery effectively prolonged survival and enhanced the paracrine function of MSCs, as demonstrated by in vitro and in vivo assays. The enhanced therapeutic efficacy of engineered MSCs combined with intracellular NO delivery was further confirmed in mouse and rat models of myocardial infarction, and a clinically relevant cell administration paradigm through secondary thoracotomy has been attempted.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Ratos , Humanos , Camundongos , Animais , Óxido Nítrico/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Elife ; 122023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695201

RESUMO

Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant ß-galactosidase (ß-GALH363A). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of ß-GALH363A. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.


Animals are made up of cells of different types, with each type of cell specializing on a specific role. But for the body to work properly, the different types of cells must be able to coordinate with each other to respond to internal and external stimuli. This can be achieved through signaling molecules, that is, molecules released by a cell that can elicit a specific response in other cells. There are many types of different molecules, including hormones and signaling proteins. Gases can also be potent signaling molecules, participating in various biological processes. Nitric oxide (NO) is a gas signaling molecule that can freely diffuse through the membranes of cells and has roles in blood vessel constriction and other disease processes, making it a promising therapeutic agent. Unfortunately, using artificial carriers to deliver nitric oxide to the organs and tissues where it is needed can lead to issues, including immune reactions to the carrier and long-term toxicity. One way to avoid these effects is by using cells to deliver nitric oxide to the right place. Huang, Qian, Liu et al. have used mesenchymal stem cells ­ which usually develop to form connective tissues such as bone and muscle ­ to develop a cell-based NO-delivery system. The researchers genetically modified the mesenchymal stem cells to produce a compound called ß-GALH363A. On its own ß-GALH363A does not do much, but in its presence, a non-toxic, non-reactive compound developed by Huang, Qian, Liu et al., called MGP, can drive the release of NO from cells. To confirm the usefulness of their cells as a delivery system, Huang, Qian, Liu et al. transplanted some of the genetically modified mesenchymal stem cells into the kidneys of mice, and then showed that when these mice were given MGP, the levels of NO increased in the kidneys but not in other organs. This result confirms that the cell-based delivery system provides spatial and temporal control of the production of NO. These findings demonstrate a new delivery system for therapies using gas molecules, which can be controlled spatiotemporally in mice. In the future, these types of systems could be used in the clinic for long-term treatment of conditions where artificial carriers could lead to complications.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Óxido Nítrico , Células-Tronco , Engenharia Genética , Injúria Renal Aguda/terapia
7.
Chem Res Toxicol ; 36(9): 1483-1494, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37622730

RESUMO

Genipin (GP) is the reactive aglycone of geniposide, the main component of traditional Chinese medicine Gardeniae Fructus (GF). The covalent binding of GP to cellular proteins is suspected to be responsible for GF-induced hepatotoxicity and inhibits drug-metabolizing enzyme activity, although the mechanisms remain to be clarified. In this study, the mechanisms of GP-induced human hepatic P450 inactivation were systemically investigated. Results showed that GP inhibited all tested P450 isoforms via distinct mechanisms. CYP2C19 was directly and irreversibly inactivated without time dependency. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 T (testosterone as substrate) showed time-dependent and mixed-type inactivation, while CYP2B6, CYP2C8, and CYP3A4 M (midazolam as substrate) showed time-dependent and irreversible inactivation. For CYP3A4 inactivation, the kinact/KI values in the presence or absence of NADPH were 0.26 or 0.16 min-1 mM-1 for the M site and 0.62 or 0.27 min-1 mM-1 for the T site. Ketoconazole and glutathione (GSH) both attenuated CYP3A4 inactivation, suggesting an active site occupation- and reactive metabolite-mediated inactivation mechanism. Moreover, the in vitro and in vivo formation of a P450-dependent GP-S-GSH conjugate indicated the involvement of metabolic activation and thiol residues binding in GP-induced enzyme inactivation. Lastly, molecular docking analysis simulated potential binding sites and modes of GP association with CYP2C19 and CYP3A4. We propose that direct covalent binding and metabolic activation mediate GP-induced P450 inactivation and alert readers to potential risk factors for GP-related clinical drug-drug interactions.


Assuntos
Citocromo P-450 CYP3A , Gardenia , Humanos , Citocromo P-450 CYP2C19 , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450
8.
Drug Metab Dispos ; 51(6): 771-781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863865

RESUMO

Icaritin (ICT) is a prenylflavonoid derivative that has been approved by National Medical Products Administration for the treatment of hepatocellular carcinoma. This study aims to evaluate the potential inhibitory effect of ICT against cytochrome P450 (CYP) enzymes and to elucidate the inactivation mechanisms. Results showed that ICT inactivated CYP2C9 in a time-, concentration-, and NADPH-dependent manner with Ki = 1.896 µM, Kinact = 0.02298 minutes-1, and Kinact/Ki = 12 minutes-1 mM-1, whereas the activities of other CYP isozymes was minimally affected. Additionally, the presence of CYP2C9 competitive inhibitor, sulfaphenazole, superoxide dismutase/catalase system, and GSH all protected CYP2C9 from ICT-induced activity loss. Moreover, the activity loss was neither recovered by washing the ICT-CYP2C9 preincubation mixture nor the addition of potassium ferricyanide. These results, collectively, implied the underlying inactivation mechanism involved the covalent binding of ICT to the apoprotein and/or the prosthetic heme of CYP2C9. Furthermore, an ICT-quinone methide (QM)-derived GSH adduct was identified, and human glutathione S-transferases (GST) isozymes GSTA1-1, GSTM1-1, and GSTP1-1 were shown to be substantially involved in the detoxification of ICT-QM. Interestingly, our systematic molecular modeling work predicted that ICT-QM was covalently bound to C216, a cysteine residue located in the F-G loop downstream of substrate recognition site (SRS) 2 in CYP2C9. The sequential molecular dynamics simulation confirmed the binding to C216 induced a conformational change in the active catalytic center of CYP2C9. Lastly, the potential risks of clinical drug-drug interactions triggered by ICT as a perpetrator were extrapolated. In summary, this work confirmed that ICT was an inactivator of CYP2C9. SIGNIFICANCE STATEMENT: This study is the first to report the time-dependent inhibition of CYP2C9 by icaritin (ICT) and the intrinsic molecular mechanism behind it. Experimental data indicated that the inactivation was via irreversible covalent binding of ICT-quinone methide to CYP2C9, while molecular modeling analysis provided additional evidence by predicting C216 as the key binding site which influenced the structural confirmation of CYP2C9's catalytic center. These findings suggest the potential of drug-drug interactions when ICT is co-administered with CYP2C9 substrates clinically.


Assuntos
Sistema Enzimático do Citocromo P-450 , Isoenzimas , Humanos , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/metabolismo
9.
Protein Cell ; 14(7): 497-512, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921027

RESUMO

Age-dependent loss of skeletal muscle mass and function is a feature of sarcopenia, and increases the risk of many aging-related metabolic diseases. Here, we report phenotypic and single-nucleus transcriptomic analyses of non-human primate skeletal muscle aging. A higher transcriptional fluctuation was observed in myonuclei relative to other interstitial cell types, indicating a higher susceptibility of skeletal muscle fiber to aging. We found a downregulation of FOXO3 in aged primate skeletal muscle, and identified FOXO3 as a hub transcription factor maintaining skeletal muscle homeostasis. Through the establishment of a complementary experimental pipeline based on a human pluripotent stem cell-derived myotube model, we revealed that silence of FOXO3 accelerates human myotube senescence, whereas genetic activation of endogenous FOXO3 alleviates human myotube aging. Altogether, based on a combination of monkey skeletal muscle and human myotube aging research models, we unraveled the pivotal role of the FOXO3 in safeguarding primate skeletal muscle from aging, providing a comprehensive resource for the development of clinical diagnosis and targeted therapeutic interventions against human skeletal muscle aging and the onset of sarcopenia along with aging-related disorders.


Assuntos
Sarcopenia , Animais , Humanos , Sarcopenia/genética , Sarcopenia/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Primatas/metabolismo
10.
J Agric Food Chem ; 71(5): 2399-2410, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705628

RESUMO

Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Glutationa Transferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismo
11.
Drug Chem Toxicol ; 46(2): 392-399, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35253568

RESUMO

This study evaluated the subacute toxicity and toxicokinetics of a potential anti-cancer drug candidate, pterostilbene, in rats. Animals were orally administered at two repeated doses of 200 and 500 mg/kg for 28 days. No mortality was observed during the 28 days of continuous administration of pterostilbene. Body weight and food consumption in each group increased steadily, while no significant difference was found. Liver weight in the 500 mg/kg female, but not male group increased with mild cytoplasmic vacuoles observed in histopathological study. Toxicokinetics was assessed by measuring plasma concentrations of pterostilbene on the first and 28th day of administration using UPLC-MS/MS. Toxicokinetic parameters showed that AUC0-t significantly increased in all animals, while the increase in females was greater than males. System exposure of pterostilbene appeared to be linear within the administrated dose range. In conclusion, our findings suggested a minimal subacute toxicity profile of pterostilbene, which could strongly support further development of this compound as a novel anti-cancer agent.


Assuntos
Neoplasias , Espectrometria de Massas em Tandem , Masculino , Ratos , Feminino , Animais , Toxicocinética , Cromatografia Líquida
12.
J Agric Food Chem ; 71(1): 331-346, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538288

RESUMO

Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.


Assuntos
Isoenzimas , Quinonas , Humanos , Resveratrol , Especificidade da Espécie , Glutationa/metabolismo
13.
Adv Sci (Weinh) ; 10(3): e2204626, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416304

RESUMO

Endothelial cell injury plays a critical part in ischemic acute kidney injury (AKI) and participates in the progression of AKI. Targeting renal endothelial cell therapy may ameliorate vascular injury and further improve the prognosis of ischemic AKI. Here, P-selectin as a biomarker of ischemic AKI in endothelial cells is identified and P-selectin binding peptide (PBP)-engineered extracellular vesicles (PBP-EVs) with imaging and therapeutic functions are developed. The results show that PBP-EVs exhibit a selective targeting tendency to injured kidneys, while providing spatiotemporal information for the early diagnosis of AKI by quantifying the expression of P-selectin in the kidneys by molecular imaging. Meanwhile, PBP-EVs reveal superior nephroprotective functions in the promotion of renal repair and inhibition of fibrosis by alleviating inflammatory infiltration, improving reparative angiogenesis, and ameliorating maladaptive repair of the renal parenchyma. In conclusion, PBP-EVs, as an ischemic AKI theranostic system that is designed in this study, provide a spatiotemporal diagnosis in the early stages of AKI to help guide personalized therapy and exhibit superior nephroprotective effects, offering proof-of-concept data to design EV-based theranostic strategies to promote renal recovery and further improve long-term outcomes following AKI.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Humanos , Células Endoteliais/metabolismo , Selectina-P/metabolismo , Rim/metabolismo , Isquemia/terapia , Injúria Renal Aguda/metabolismo , Vesículas Extracelulares/metabolismo
14.
Exp Cell Res ; 421(2): 113411, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36351501

RESUMO

Prostaglandin metabolism is involved in the regulation of the periodic process of hair follicles. Preliminary research data reported that prostaglandin E2 (PGE2) exhibits potential in hair growth. However, the relevant evidence is still insufficient. Herein, we prepared a PGE2 matrix by conjugating PGE2 with collagen via crosslinkers to avoid rapid degradation of PGE2 molecules in vivo. First, we measured the physical properties of the PGE2 matrix. A mouse model of hair loss was established, and PGE2 matrix subcutaneous injection was applied to evaluate hair growth. Under different treatments with the PGE2 matrix, the morphology of hair follicles, the dynamic expression of hair follicle stem cell markers and key regulators in the hair growth cycle were explored. Our data revealed that the PGE2 matrix increased the proportion of developing hair follicles at the early growth stage. Improvements in hair follicle stem cells, such as Sox9+ and Lgr5+ cells, have also been confirmed as therapeutic effects of PGE2 to stimulate hair follicle growth. Our study indicated that PGE2 exhibits effective roles in hair development during anagen. Furthermore, the results also highlight the potential of the PGE2 delivery system as a novel therapeutic strategy for the treatment of hair disorders in the future.


Assuntos
Dinoprostona , Folículo Piloso , Camundongos , Animais , Folículo Piloso/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Cabelo , Células-Tronco , Colágeno/farmacologia , Colágeno/metabolismo
15.
Stem Cell Res Ther ; 13(1): 253, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715868

RESUMO

BACKGROUND: Intravenous administration of mesenchymal stromal cells (MSCs) has an acknowledged competence of cardiac repair, despite a lack of systematic description of the underlying biological mechanisms. The lung, but not the heart, is the main trapped site for intravenously transplanted MSCs, which leaves a spatial gap between intravenously transplanted MSCs and the injured myocardium. How lung-trapped MSCs after intravenous transplantation rejuvenate the injured myocardium remains unknown. METHODS: MSCs were isolated from human placenta tissue, and DF-MSCs or Gluc-MSCs were generated by transduced with firefly luciferase (Fluc)/enhanced green fluorescence protein (eGFP) or Gaussia luciferase (Gluc) lactadherin fusion protein. The therapeutic efficiency of intravenously transplanted MSCs was investigated in a murine model of doxorubicin (Dox)-induced cardiotoxicity. Trans-organ communication from the lung to the heart with the delivery of blood was investigated by testing the release of MSC-derived extracellular vesicles (MSC-EVs), and the potential miRNA inner MSC-EVs were screened out and verified. The potential therapeutic miRNA inner MSC-EVs were then upregulated or downregulated to assess the further therapeutic efficiency RESULTS: Dox-induced cardiotoxicity, characterized by cardiac atrophy, left ventricular dysfunction, and injured myocardium, was alleviated by consecutive doses of MSCs. These cardioprotective effects might be attributed to suppressing GRP78 triggering endoplasmic reticulum (ER) stress-induced apoptosis in cardiomyocytes. Our results confirmed that miR-181a-5p from MSCs-derived EVs (MSC-EVs) inhibited GRP78. Intravenous DF-MSCs were trapped in lung vasculature, secreted a certain number of EVs into serum, which could be confirmed by the detection of eGFP+ EVs. GLuc activity was increased in serum EVs from mice administrated with GLuc-MSCs. MiR-181a-5p, inhibiting GRP78 with high efficacy, was highly expressed in serum EVs and myocardium after injecting consecutive doses of MSCs into mice treated with Dox. Finally, upregulation or downregulation of miR-181a-5p levels in MSC-EVs enhanced or weakened therapeutic effects on Dox-induced cardiotoxicity through modulating ER stress-induced apoptosis. CONCLUSIONS: This study identifies intravenously transplanted MSCs, as an endocrine reservoir, to secrete cardioprotective EVs into blood continuously and gradually to confer the trans-organ communication that relieves Dox-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Cardiotoxicidade/terapia , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
16.
J Nanobiotechnology ; 20(1): 95, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209908

RESUMO

BACKGROUND: The promising therapeutic strategy for the treatment of peripheral artery disease (PAD) is to restore blood supply and promote regeneration of skeletal muscle regeneration. Increasing evidence revealed that prostaglandin E2 (PGE2), a lipid signaling molecule, has significant therapeutic potential for tissue repair and regeneration. Though PGE2 has been well reported in tissue regeneration, the application of PGE2 is hampered by its short half-life in vivo and the lack of a viable system for sustained release of PGE2. RESULTS: In this study, we designed and synthesized a new PGE2 release matrix by chemically bonding PGE2 to collagen. Our results revealed that the PGE2 matrix effectively extends the half-life of PGE2 in vitro and in vivo. Moreover, the PGE2 matrix markedly improved neovascularization by increasing angiogenesis, as confirmed by bioluminescence imaging (BLI). Furthermore, the PGE2 matrix exhibits superior therapeutic efficacy in the hindlimb ischemia model through the activation of MyoD1-mediated muscle stem cells, which is consistent with accelerated structural recovery of skeletal muscle, as evidenced by histological analysis. CONCLUSIONS: Our findings highlight the chemical bonding strategy of chemical bonding PGE2 to collagen for sustained release and may facilitate the development of PGE2-based therapies to significantly improve tissue regeneration.


Assuntos
Dinoprostona , Neovascularização Fisiológica , Animais , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Isquemia/tratamento farmacológico , Isquemia/patologia , Músculo Esquelético
17.
iScience ; 24(11): 103243, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746706

RESUMO

Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy.

18.
Anim Nutr ; 7(3): 707-715, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466675

RESUMO

This study applied in vivo and in vitro methods to investigate the effect of dietary N-carbamoylglutamate (NCG) on lipid metabolism, inflammation and apoptosis related-gene expression in visceral adipose tissue and isolated adipocytes of Japanese seabass (Lateolabrax japonicus). A basal diet and a test diet supplemented with 720 mg/kg NCG were fed to the fish for 10 weeks. During the growth trial, no mortality and no significant differences in growth performance were observed in fish between the 2 groups (P > 0.05). Plasma Arg content and mRNA level of argininosuccinate synthetase (ASS) in adipose tissue were significantly increased, which indicated that NCG inclusion promoted endogenous Arg synthesis. Thereafter, the potential effects of NCG treatment on lipid metabolism-related genes expression were studied through in vivo and in vitro methods. In the present study, we successfully established a primary adipocytes culture system and isolated pre-adipocytes in vitro of Japanese seabass for the first time. Both the results in vivo and in vitro showed that NCG treatment decreased the mRNA levels of genes related to adipogenesis (fatty acid synthase, FASN), cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR) and fat deposition (lipoprotein lipase [LPL] and leptin), which revealed the underlying mechanism of NCG on reducing fat deposition. The results of this study demonstrated that NCG inclusion reduced the expression of inflammatory and apoptosis cytokines markedly in vivo and in vitro. In conclusion, NCG did exert beneficial effects on ameliorating adipogenesis, inflammation and apoptosis via promoting Arg endogenous synthesis in Japanese seabass.

19.
Theranostics ; 11(18): 8836-8854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522214

RESUMO

Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.


Assuntos
Dinoprostona/fisiologia , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Dinoprostona/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
20.
Stem Cell Res Ther ; 12(1): 379, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215331

RESUMO

BACKGROUND: Embryonic stem cell-derived extracellular vesicles (ESC-EVs) possess therapeutic potential for a variety of diseases and are considered as an alternative of ES cells. Acute kidney injury (AKI) is a common acute and severe disease in clinical practice, which seriously threatens human life and health. However, the roles and mechanisms of ESC-EVs on AKI remain unclear. METHODS: In this study, we evaluated the effects of ESC-EVs on physiological repair and pathological repair using murine ischemia-reperfusion injury-induced AKI model, the potential mechanisms of which were next investigated. EVs were isolated from ESCs and EVs derived from mouse fibroblasts as therapeutic controls. We then investigated whether ESC-EVs can restore the structure and function of the damaged kidney by promoting physiological repair and inhibiting the pathological repair process after AKI in vivo and in vitro. RESULTS: We found that ESC-EVs significantly promoted the recovery of the structure and function of the damaged kidney. ESC-EVs increased the proliferation of renal tubular epithelial cells, facilitated renal angiogenesis, inhibited the progression of renal fibrosis, and rescued DNA damage caused by ischemia and reperfusion after AKI. Finally, we found that ESC-EVs play a therapeutic effect by activating Sox9+ cells. CONCLUSIONS: ESC-EVs significantly promote the physiological repair and inhibit the pathological repair after AKI, enabling restoration of the structure and function of the damaged kidney. This strategy might emerge as a novel therapeutic strategy for ESC clinical application.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Injúria Renal Aguda/terapia , Animais , Células-Tronco Embrionárias , Rim , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...