Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 143: 107986, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34735912

RESUMO

At present, carcinoembryonic antigen (CEA) is considered a broad-spectrum cancer biomarker, and its accurate analysis in clinical samples can assist early cancer diagnosis and treatment. Herein, a novel electrochemical aptasensor has been proposed for CEA detection based on exonuclease III and hybrid chain reaction. The target CEA specifically binds to the aptamer region in hairpin probe 1 (defined as H1) by strong attraction, which leads the rest of the H1 triggering catalytic hairpin assembly to form a high quantity of H1 and hairpin probe 2 (defined as H2) double chain complex (denoted as H1@H2). Subsequently, the exonuclease III digests the complex of H1@H2 and liberates H1 to induce the first signal amplification. Simultaneously, a large number of generated trigger chains initiate a hybrid chain reaction and produce a second signal amplification. This proposed sensor exhibited excellent analytical performance for the detection of CEA, with wide linear range from 10 pg.mL-1 to 100 ng.mL-1 and low limit of detection of 0.84 pg.mL-1. Additionally, the biosensing strategy was successfully verified for direct measurement of CEA in human serum. Therefore, this elaborated sensor provides a new simple method for detecting CEA and exhibits great promise in the early screening of cancer.


Assuntos
Antígeno Carcinoembrionário
2.
Anal Methods ; 12(45): 5496-5502, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33150889

RESUMO

Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antígeno Carcinoembrionário , Entropia , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...