Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(15): 7721-7738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439182

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver cirrhosis and cancer. Lonicerae flos polysaccharides (LPs) have been shown to be effective in treating metabolic diseases; however, the therapeutic effects and underlying molecular mechanisms of LPs in NAFLD remain unclear. PURPOSE: The objective of this study was to investigate the morphological characterization of Lonicerae flos polysaccharides (LPs) and the mechanism of LPs in relieving NAFLD. METHODS: The morphology of LPs was observed using atomic force microscopy (AFM), X-ray diffraction (XRD), thermal weight (TG), and thermal weight derivative (DTG); NAFLD mice were treated with LPs at the same time as they were induced with a Western diet, and then the indexes related to glycolipid metabolism, fibrosis, inflammation, and autophagy in the serum and liver of the mice were detected. RESULTS: The atomic force microscope analysis results indicated that the LPs displayed sugar-chain aggregates, exhibited an amorphous structure, and were relatively stable in thermal cracking at 150 °C. It was also found that LPs exerted therapeutic effects in NAFLD. The LPs prevented high-fat and -cholesterol diet-induced NAFLD progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, fibrosis, and autophagy. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor compound C abrogated LP-induced hepatoprotection in mice with NAFLD. The LPs further treated NAFLD by reshaping the structure of the gut microbiota, in which Desulfovibrio bacteria plays a key roles. CONCLUSION: Lonicerae flos polysaccharides exert protective effects against NAFLD in mice by improving the structure of the intestinal flora and activating the AMPK signaling pathway. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipopolissacarídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fibrose , Adenosina/metabolismo , Adenosina/farmacologia , Adenosina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
2.
J Sci Food Agric ; 103(5): 2554-2563, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36494898

RESUMO

BACKGROUND: Hyperlipidemia is regarded as a public health matter, and its effective prevention and treatment are urgently required. However, the treatment of hyperlipidemia is still relatively scarce. RESULTS: Fermented Cerasus humilis fruit (FCHF) had higher total flavonoid, total phenolic, procyanidin, and organic and free amino acid content, and lower total sugar content, than non-fermented C. humilis fruit (NFCHF). Both FCHF and NFCHF treatment significantly prevent putting on weight. Furthermore, FCHF administration ameliorated hyperlipidemia and cholesterol over-accumulation. In addition, FCHF administration activated the antioxidase system and decreased the malondialdehyde content to relieve oxidative stress, and showed more efficaciously than NFCHF administration. FCHF treatments significantly reverse the fat deposition in high-fat diet rat liver. FCHF supplementation can relieve the dysbacteriosis induced by hyperlipidemia, and regulate the composition of rat gut microbiota by increasing the abundance of Prevotella and norank_f_Muribaculaceae. CONCLUSION: Lactobacillus plantarum and Saccharomyces cerevisiae fermentation enhanced the antihyperlipidemic property of C. humilis fruits by promoting gut microbiota regulation. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Ratos , Animais , Frutas/química , Hiperlipidemias/metabolismo , Dieta Hiperlipídica , Estresse Oxidativo
3.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4341-4346, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046860

RESUMO

Pruning branches and leaves is the measure to stimulate the growth of Lonicera japonica flower buds, and consequently, the resources of pruned leaves are inevitably and seriously wasted in production. High-performance liquid chromatography(HPLC) was applied for content determination of seven active ingredients(chlorogenic acid, galuteolin, isochlorogenic acids A, B, and C, secologanic acid, and secoxyloganin) in L. japonica leaves from March to November. The results showed that the tillering removed from the trunk of L. japonica in March, the leaves pruned from May to July, and the leaves after the first frost date in November were rich in active ingredients, which deserved further exploitation and utilization. The total content(TC) of active ingredients in pruned L. japonica leaves in early March was the highest. The content of active ingredients in L. japonica leaves increased significantly after the first frost date, which was close to that in the bud tillers pruned in early and middle March. After the first frost date, L. japonica leaves are incapable of photosynthesis, and the harvesting of L. japonica leaves does not affect the physiological activities of the tree. In addition to huge resources, the content of active ingredients is high during this period, which is the best harvesting period of L. japonica leaves.


Assuntos
Lonicera , Cromatografia Líquida de Alta Pressão/métodos , Flores , Folhas de Planta
4.
Food Funct ; 13(10): 5766-5781, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35536119

RESUMO

Ulcerative colitis (UC) is a modern, refractory disease, and studies have shown that UC is closely associated with the gut microbiota and intestinal immune barrier. This study evaluated the protective effects and regulatory mechanism of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] fermentation juice (CFJ) on UC induced by dextran sulfate sodium (DSS). The results indicated that CFJ could significantly modulate the oxidative stress index in the serum and colon, observably reduce MPO and NO activity, and increase the SOD level. CFJ significantly downregulated the levels of TNF-α, IL-1ß and IL-6 and reduced inflammation caused by DSS. SIgA and short-chain fatty acids (SCFAs) levels were effectively improved in the CFJ group, especially the acetic acid and butyric acid levels. Intestinal flora analysis showed that DSS could enrich harmful bacteria such as Alistipes and Oribacterium and that CFJ could increase the abundance of beneficial bacteria (Parasutterella, Bacteroides, Roseburia and Blautia). SIgA in the colon was positively correlated with Lachnoclostridium, Blautia, Lachnospiraceae_UCG-004, Prevotellaceae_NK3B31_group and other beneficial bacteria. The results showed that DSS group rats had immunity and signalling pathway disorders and that CFJ could regulate immune disorders, mainly by regulating the expression of IgA pathway components. Taken together, our results demonstrated that CFJ could regulate changes in the gut microbiota, improve the expression of immune protein-related genes, further regulate intestinal mucosal immune function and maintain intestinal mucosal barrier homeostasis.


Assuntos
Colite Ulcerativa , Colite , Prunus , Animais , Bactérias/genética , Bactérias/metabolismo , China , Colite/induzido quimicamente , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Fermentação , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prunus/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...