Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 119(6): 2157-67, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25046564

RESUMO

In this study, we used the tryptophan analogue, (2,7-aza)Trp, which exhibits water catalyzed proton transfer isomerization among N(1)-H, N(7)-H, and N(2)-H isomers, to probe the water environment of tryptophan-59 (Trp59) near the connecting loop region of ribonuclease Tl (RNase T1) by replacing the tryptophan with (2,7-aza)Trp. The resulting (2,7-aza)Trp59 triple emission bands and their associated relaxation dynamics, together with relevant data of 7-azatryptophan and molecular dynamics (MD) simulation, lead us to propose two Trp59 containing conformers in RNase T1, namely, the loop-close and loop-open forms. Water is rich in the loop-open form around the proximity of (2,7-aza)Trp59, which catalyzes (2,7-aza)Trp59 proton transfer in the excited state, giving both N(1)-H and N(7)-H isomer emissions. The existence of N(2)-H isomer in the loop-open form, supported by the MD simulation, is mainly due to the specific hydrogen bonding between N(2)-H proton and water molecule that bridges N(2)-H and the amide oxygen of Pro60, forming a strong network. The loop-close form is relatively tight in space, which squeezes water molecules out of the interface of α-helix and ß2 strand, joined by the connecting loop region; accordingly, the water-scant environment leads to the sole existence of the N(1)-H isomer emission. MD simulation also points out that the Trp-water pairs appear to preferentially participate in a hydrogen bond network incorporating polar amino acid moieties on the protein surface and bulk waters, providing the structural dynamic features of the connecting loop region in RNase T1.


Assuntos
Ribonuclease T1/química , Água/química , Substituição de Aminoácidos , Aspergillus oryzae/enzimologia , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Ribonuclease T1/genética , Triptofano
2.
J Phys Chem B ; 119(6): 2302-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25225896

RESUMO

The mechanism of the water-catalyzed excited-state proton-transfer (ESPT) reaction for 7-azaindole (7AI) has long been investigated, but there are some controversial viewpoints. Recently, owing to the superiority of sensing biowaters in proteins by a 7AI analogue, 2,7-diazatryptophan, it is timely to reinvestigate water-catalyzed ESPT in 7AI and its analogues in an attempt to unify the mechanism. Herein, a series of 7AI analogues and their methylated derivatives were synthesized to carry out a systematic study on pKa, pKa*, and the associated fluorescence spectroscopy and dynamics. The results conclude that all 7AI derivatives undergo water-catalyzed ESPT in neutral water. However, for those derivatives with -H (7AI) and a electron-donating substituent at C(3), they follow water-catalyzed ESPT to form an excited N(7)-H proton-transfer tautomer, T*. T* is rapidly protonated to generate an excited cationic (TC*) species. TC* then undergoes a fast deactivation to the N(1)-H normal species in the ground state. Conversely, protonation in T* is prohibited for those derivatives with an electron-withdrawing group at the C(2) or C(3) or with the C(2) atom replaced by an electron-withdrawing nitrogen atom (N(2) in, e.g., 2,7-diazatryptophan), giving a prominent green T* emission. Additional support is given by the synthesis of the corresponding N(7)-CH3 tautomer species, for which pKa* of the cationic form, that is, the N(7)-CH3N(1)-H(+) species, is measured to be much greater than 7.0 for those with electron-donating C(3) substituents, whereas it is lower than 7.0 upon anchoring electron-withdrawing groups. For 7AI, the previously missing T* emission is clearly resolved with a peak wavelength at 530 nm in the pH interval of 13.0-14.3 (H- 14.2).

3.
J Chem Phys ; 133(7): 074307, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20726642

RESUMO

Photodissociation of amino acid tryptophan in a molecular beam at wavelengths of 212.8 and 193 nm, corresponding to excitation to the second and third absorption bands, was investigated using multimass ion imaging techniques. The respective wavelengths also represent excitation to the edge of a positive circular dichroism band and the center of a negative circular dichroism band of L-tryptophan. Only one dissociation channel was observed at both photolysis wavelengths: C(8)NH(6)CH(2)CHNH(2)COOH-->C(8)NH(6)CH(2)+CHNH(2)COOH. Dissociation rates were found to be 1.3x10(6) and 5x10(6) s(-1) at the respective wavelengths. Comparison to theoretical calculation indicates that dissociation occurs on the ground state after internal conversion. Implication of asymmetric photolysis is discussed.


Assuntos
Fotólise , Triptofano/química , Elétrons , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...