Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 363: 142746, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969223

RESUMO

Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.

2.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299301

RESUMO

Li3VO4 (LVO) is a highly promising anode material for lithium-ion batteries, owing to its high capacity and stable discharge plateau. However, LVO faces a significant challenge due to its poor rate capability, which is mainly attributed to its low electronic conductivity. To enhance the kinetics of lithium ion insertion and extraction in LVO anode materials, a conductive polymer called poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is applied to coat the surface of LVO. This uniform coating of PEDOT:PSS improves the electronic conductivity of LVO, thereby enhancing the corresponding electrochemical properties of the resulting PEDOT:PSS-decorated LVO (P-LVO) half-cell. The charge/discharge curves between 0.2 and 3.0 V (vs. Li+/Li) indicate that the P-LVO electrode displays a capacity of 191.9 mAh/g at 8 C, while the LVO only delivers a capacity of 111.3 mAh/g at the same current density. To evaluate the practical application of P-LVO, lithium-ion capacitors (LICs) are constructed with P-LVO composite as the negative electrode and active carbon (AC) as the positive electrode. The P-LVO//AC LIC demonstrates an energy density of 107.0 Wh/kg at a power density of 125 W/kg, along with superior cycling stability and 97.4% retention after 2000 cycles. These results highlight the great potential of P-LVO for energy storage applications.

3.
Chemosphere ; 300: 134484, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395258

RESUMO

In this study, the Ni(OH)2/CuO heterostructured photocatalysts have been prepared via microwave (MW) hydrothermal method. The results indicate that the Ni(OH)2/CuO heterostructured composite exhibits a strong absorption in the UV and Vis regions. The construction of the heterojunction also improves the photogenerated carrier transport and inhibits the electron-hole separation due to the enhanced absorbance and the well alignment of the energy band at the Ni(OH)2/CuO interface. The photocatalytic capability of the heterostructured composites with different Ni(OH)2/CuO molar ratios is evaluated by the photodegradation of methylene blue under visible light illumination. The results reveal that the Ni(OH)2/CuO (1:1) heterostructures show the best photocatalytic efficiency, which is 2.18 and 6.13 times higher than that of pure Ni(OH)2 and CuO, respectively. Besides, the Ni(OH)2/CuO composites also reveal remarkable biocompatibility and strong photocatalytic activity in the degradation of antibiotics such as ciprofloxacin (CIP) and tetracycline (TC) and inactivation of Escherichia coli (E. coli).


Assuntos
Poluentes Ambientais , Antibacterianos , Catálise , Cobre/química , Escherichia coli
4.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160564

RESUMO

In this article, hierarchical porous carbon (HPC) with high surface area of 1604.9 m2/g is prepared by the pyrolysis of rubberwood sawdust using CaCO3 as a hard template. The bio-oil pyrolyzed from the rubber sawdust, followed by the polymerization reaction to form resole phenolic resin, can be used as a carbon source to prepare HPC. The biomass-derived HPC shows a three-dimensionally interconnected morphology which can offer a continuous pathway for ionic transport. The symmetrical supercapacitors based on the as-prepared HPC were tested in 1.0 M tetraethylammonium tetrafluoroborate/propylene carbonate electrolyte. The results of electrochemical analysis show that the HPC-based supercapacitor exhibits a high specific capacitance of 113.3 F/g at 0.5 A/g with superior rate capability and cycling stability up to 5000 cycles. Hybrid lithium-ion capacitors (LICs) based on the HPC and Li4Ti5O12 (LTO) were also fabricated. The LICs have a maximum energy density of 113.3 Wh/kg at a power density of 281 W/kg. Moreover, the LIC also displays a remarkable cycling performance with a retention of 92.8% after 3000 cycles at a large current density of 0.75 A/g, suggesting great potential application in the energy storage of the LIC.

5.
ACS Appl Mater Interfaces ; 13(33): 39088-39099, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433242

RESUMO

In this work, we demonstrated that building different linking groups between nanodiamond (ND) and TiO2 (P25) could provide more effective protection under oxidative stress and ultraviolet (UV) light irradiation compared with the use of TiO2 alone. The establishment of ester (-C-O-O-R), amide (-CONH-), and epoxide-amine adduct (-NHCCO-) groups between ND-TiO2 composites was found to be critical in the generation of reactive oxygen species (ROS) by controlling their charge transfer behaviors. We hypothesized that linking groups between the composites dictate the performance of ROS generation from nano-TiO2 under UV-light irradiation due to the differences in linking groups. The results showed that hydroxyl radicals were attenuated by the incorporation of ND. An MTT cell proliferation assay was performed in human cells under the treatment of ND-TiO2 composites to investigate the impacts of composites on cell viability. The results from the luciferase reporter assay suggested they have anti-inflammatory activity and can reduce cellular DNA damage under ROS stimulation. A zebrafish model was also applied with the ND-TiO2 composite treatment to demonstrate the safety aspects of the composites in vivo and their biomedical application potential. Studies exploring ROS generation behaviors in different linking groups suggested that interactive functionalization between nanoparticles might be an ideal antioxidant and anti-inflammatory strategy.


Assuntos
Anti-Inflamatórios/química , Sequestradores de Radicais Livres/química , Nanocompostos/química , Nanodiamantes/química , Titânio/química , Amidas/química , Animais , Anti-Inflamatórios/farmacologia , Carbodi-Imidas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Esterificação , Sequestradores de Radicais Livres/farmacologia , Células HEK293 , Humanos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Nanomedicina Teranóstica , Raios Ultravioleta , Peixe-Zebra
6.
Polymers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063791

RESUMO

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4'-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).

7.
J Hazard Mater ; 402: 123457, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712357

RESUMO

In this article, we have synthesized Co2+-doped BiOBrxCl1-x hierarchical nanostructured microspheres, featuring different degrees of Co2+ doping, displaying excellent photocatalytic performance. X-ray diffraction and Raman spectroscopy indicated that the Co2+ ions were successfully doped into the BiOBrxCl1-x nanocrystals. The photodegradation rate of rhodamine B mediated by a doped BiOBrxCl1-x was 150 % greater than that of the non-doped BiOBr. We ascribe the improved photocatalytic capability of the Co2+-doped BiOBrxCl1-x to a combination of its superior degree of light absorption, more efficient carrier separation, and faster interfacial charge migration. The major active species involved in the photodegradation of RhB also has been investigated. Moreover, the doped BiOBrxCl1-x possessed excellent cellular biocompatibility and displayed remarkable performance in the photocatalytic bacterial inactivation.


Assuntos
Antibacterianos , Bismuto , Escherichia coli , Microesferas , Antibacterianos/farmacologia , Catálise , Rodaminas
8.
Chemosphere ; 258: 127384, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947660

RESUMO

As a two-dimensional nanomaterial, bismuth oxybromide (BiOBr) have attracted tremendous interest in the area of visible-light photocatalysis since it can provide the internal electric field (IEF) through z-axis through its unique electronic band structure. However, the insufficient active sites and rapid recombination rate of charged carriers hamper the efficiency of the photocatalysis. To address these two major obstacles, an enticing strategy of constructing heterojunction was established by introducing Bi2O2(OH)(NO3) (BiON) in BiOBr with the same precursor. Through a facile one-pot hydrothermal synthesis, two Sillén-type layered photocatalysts, with intimately constructed ultrathin heterostructure, was synthesized by the co-precipitation method. In this work, the formation of Bismuth-based heterojunction for charge separation is established by the excessive bismuth nitrate, which subsequently participates with the in situ growth of ultrathin hierarchical microspheres. By attenuating the thickness of BiOBr from 20 nm to 8 nm with the aid of BiON, the photogenerated charges could migrate to the active sites through shorter charge diffusion pathway. Also, the BiOBr and BiON act as an active bridge to promote the separation of electron-hole pairs, which also brings out more active sites due to its increased specific surface area. BiON/BiOBr ultrathin hierarchical microspheres exhibited enhanced visible-light photocatalytic activity for decontaminating several types of pollutants. Besides, the activity of as-prepared BiON/BiOBr was further evaluated by inhibiting the growth of kanamycin-resistant bacteria strains. This study presents a novel strategy to incorporate the crystalline bismuth hydrate nitrate into BiOBr to form ultrathin hierarchical microspheres with high surface area for environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Microesferas , Bismuto/química , Catálise , Luz , Nitratos/química
9.
Mater Sci Eng C Mater Biol Appl ; 109: 110593, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228904

RESUMO

Giving patients right dosage is an essential concept of precision medicine. Most of nanocarriers lack of flexible drug capacity and structural stability to be customized for specific treatment, resulting in low therapeutic efficacy and unexpected side effects. Thus, a growing need emerges for fast and rigorous approaches to develop nanoparticles with properties of adjustable dosage and controllable particle size. Poly-l-Lysine is known for its enhanced bioadhesivity and pH-triggered structural swelling effect, which is utilized as the main agent to activate the multistage drug releasing. Inspired by natural bio-assembly system, we report a simple method to self-assemble Poly-l-Lysine-based nanoparticles via supramolecular recognitions of cross-linked pyrenes, which provides noncovalent force to flexibly encapsulate Doxorubincin and to construct robust nanostructures. Pyrene-modified polypeptide self-assemblies are able to adjust drug payload from 1: 10 to 2:1 (drug: polypeptide) without changing its uniform nano-spherical morphology. This nanostructure remained the as-made morphology even after experiencing the long-term (~ 10 weeks) storage at room temperature. Also, the nanoparticles displayed multi-step drug release behaviours and exhibited great in vitro and in vivo cytotoxicity towards colon cancer cells. The as-mentioned nanoparticles provide a novel perspective to compensate the clinical needs of specific drug feedings and scalable synthesis with advantages of simple-synthesis, size-adaptivity, and morphology reversibility.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Polilisina/química , Polilisina/farmacologia , Pirenos/química , Pirenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
ACS Appl Bio Mater ; 3(9): 5948-5956, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021823

RESUMO

Scientists have studied intensively the gene delivery carriers for treating genetic diseases. However, there are challenges that impede the application of naked gene-based therapy at the clinical level, such as quick elimination of the circulation, lack of membrane penetrability, and poor endosome trapping. Herein, we develop graphene quantum dots (GQDs)-derivative nanocarriers and introduce polyethylenimine (PEI) to equip the system with enhanced biocompatibility and abundant functional groups for modification. In addition to carrying green fluorescent protein (GFP) as an example of gene delivery, this system covalently binds colon cancer cells targeted antibody and epidermal growth factor receptor (EGFR) to enhance cell membrane penetrability and cell uptake of nanocarriers. To achieve multistrategy cancer therapy, the anticancer drug doxorubicin (Dox) is noncovalently encapsulated to achieve pH-induced drug release at tumor sites and leaves space for further functional gene modification. This nanoparticle serves as a multifunctional gene delivery system, which facilitates improved cytotoxicity and longer-sustained inhibition capacity compared to free Dox treatments in colon cancer cells. Moreover, our GQD composites display compatible tumor suppression ability compared with the free Dox treatment group in xenograft mice experiment with significantly less toxicity. This GQD nanoplatform was demonstrated as a multifunctional gene delivery system that could contribute to treating other genetic diseases in the future.

11.
ACS Appl Mater Interfaces ; 11(1): 311-319, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540433

RESUMO

Titanium dioxide nanomaterials have good capability to prevent human cells from damage under UV irradiation. However, some studies indicated that the nanoscale of titanium dioxide could potentially cause harmful effects such as free radical generation under UV irradiation and thereby accelerate the progress of cell aging. Fullerenes can scavenge large amounts of free radicals due to the fact that fullerenes contain enormous amount of π electrons with low lying lowest unoccupied molecular orbital, but its adverse properties, such as the poor solubility in water, restricted the applicability. In this study, we employed water-soluble carboxylic acid fullerenes (C60-COOH and C70-COOH) as the free radical scavenger and modify onto the surface of titanium dioxide by refluxed esterification (P25/C60-COOH or C70-COOH) technique. The conformation and properties of these nanomaterials were characterized by techniques and equipment such as X-ray diffraction, energy dispersive spectroscopy analysis, scanning electron microscopy, thermal gravimetric analysis, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. We also introduced methylene blue and rhodamine B as indicators to evaluate and demonstrate the scavenging capacity of these nanomaterials. Moreover, we examined the biocompatibility and UV protection capacity of our P25/fullerene composites in human 293T cells, and applied luciferase activity assay to investigate the possible underlying cell protection mechanisms exhibited by these nanomaterials. Our data indicate that both P25/C60-COOH and P25/C70-COOH could protect human cells against UV exposure. P25/C70-COOH exhibits great anti-inflammation capacity, whereas P25/C60-COOH exhibits great anti-oxidative stress and anti-DNA damage capacity. Our results suggest that most of our P25/fullerene composite materials have the ability to reduce free radicals and exhibit high biomedical potential in anti-inflammation, anti-oxidant, and anti-aging applications.


Assuntos
Sequestradores de Radicais Livres , Fulerenos , Nanoestruturas , Envelhecimento da Pele , Titânio , Raios Ultravioleta/efeitos adversos , Esterificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Fulerenos/química , Fulerenos/farmacologia , Células HEK293 , Humanos , Azul de Metileno/química , Azul de Metileno/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Rodaminas/química , Rodaminas/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Titânio/química , Titânio/farmacologia
12.
ACS Appl Mater Interfaces ; 7(21): 11668-76, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25970208

RESUMO

We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate ( PEDOT: PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 Ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.

13.
ACS Appl Mater Interfaces ; 6(10): 7680-5, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24785782

RESUMO

In this study, we have synthesized a solution-processable phenothiazine, 4-phenothiazin-10-yl-anisole (APS), as hole collection material in organic solar cells (OSCs). The APS reveals unique optical and electronic properties which can efficiently modify the work function (ΦW) of indium tin oxide (ITO) electrode to enhance the electron blocking capability. Moreover, the results indicate that the APS is highly air-stable which can significantly enhance the long-term stability of OCSs. The inverted device based on APS reached a power conversion efficiency (PCE) of 3.56% and exhibited much better stability under ambient conditions relative to that of the corresponding PEDOT:PSS based device.

14.
Biosens Bioelectron ; 43: 173-9, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306072

RESUMO

In this study we performed electrochemical sensing using conductive carbon composite films containing reduced graphene oxide (rGO) and single-walled carbon nanotubes (SWCNTs) as electrode modifiers on glassy carbon electrodes (GCEs). Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy all suggested that the rGO acted as a surfactant, covering and smoothing out the surface, and that the SWCNTs acted as a conducting bridge to connect the isolated rGO sheets, thereby (i) minimizing the barrier for charge transfer between the rGO sheets and (ii) increasing the conductivity of the film. We used the rGO/SWCNT-modified GCE as a sensor to analyze hydrogen peroxide (H2O2) and ß-nicotinamide adenine dinucleotide (NADH), obtaining substantial improvements in electrochemical reactivity and detection limits relative to those obtained from rGO- and SWCNT-modified electrodes, presumably because of the higher conductivity and greater coverage on the GCE, due to π-π interactions originating from the graphitic structures of the rGO and SWCNTs. The electrocatalysis response was measured by cyclic voltammetry and amperometric current-time (i-t) curve techniques. The linear concentration range of H2O2 and NADH detection at rGO/SWCNT-modified electrode is 0.5-5M and 20-400µM. The sensitivity for H2O2 and NADH detection is 2732.4 and 204µAmM(-1)cm(-2), and the limit of detection is 1.3 and 0.078µM respectively. Furthermore, interference tests indicated that the carbon composite film exhibited high selectivity toward H2O2 and NADH. Using GO as a solubilizing agent for SWCNTs establishes a new class of carbon electrodes for electrochemical sensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Eletrodos , Grafite/química , Nanotubos de Carbono/química , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotubos de Carbono/ultraestrutura , Oxirredução , Óxidos/química
15.
ACS Nano ; 6(6): 5031-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22632158

RESUMO

Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Grafite/química , Membranas Artificiais , Nitrilas/química , Energia Solar , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
16.
ACS Nano ; 5(8): 6262-71, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21711013

RESUMO

In this study, we found that the work functions (Φ(w)) of solution-processable, functional graphene/carbon nanotube-based transparent conductors were readily manipulated, varying between 5.1 and 3.4 eV, depending on the nature of the doping alkali carbonate salt. We used the graphene-based electrodes possessing lower values of Φ(w) as cathodes in inverted-architecture polymer photovoltaic devices to effectively collect electrons, giving rise to an optimal power conversion efficiency of 1.27%.

17.
J Am Chem Soc ; 133(13): 4940-7, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21391674

RESUMO

Heterojunctions between different graphitic nanostructures, including fullerenes, carbon nanotubes and graphene-based sheets, have attracted significant interest for light to electrical energy conversion. Because of their poor solubility, fabrication of such all-carbon nanocomposites typically involves covalently linking the individual constituents or the extensive surface functionalization to improve their solvent processability for mixing. However, such strategies often deteriorate or contaminate the functional carbon surfaces. Here we report that fullerenes, pristine single walled carbon nanotubes, and graphene oxide sheets can be conveniently coassembled in water to yield a stable colloidal dispersion for thin film processing. After thermal reduction of graphene oxide, a solvent-resistant photoconductive hybrid of fullerene-nanotube-graphene was obtained with on-off ratio of nearly 6 orders of magnitude. Photovoltaic devices made with the all-carbon hybrid as the active layer and an additional fullerene block layer showed unprecedented photovoltaic responses among all known all-carbon-based materials with an open circuit voltage of 0.59 V and a power conversion efficiency of 0.21%. The ease of making such surfactant-free, water-processed, carbon thin films could lead to their wide applications in organic optoelectronic devices.


Assuntos
Fulerenos/química , Grafite/química , Nanoestruturas/química , Nanotubos de Carbono/química , Água/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
18.
ACS Appl Mater Interfaces ; 2(5): 1281-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20450193

RESUMO

We have developed polymer solar cells featuring a buffer layer of polythiophene (PT) sandwiched between the active layer and the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer. We attribute the improvement in power conversion efficiency of these polymer solar cells, relative to that of those based on poly(3-hexylthiophene):[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM), to a reduction in the degree of carrier recombination at the junction interface. Because the conductivity and the energy level of PT can be tuned simply by applying a bias to it in an electrolytic solution, we also investigated the effect of the energy level on the devices' performances. The power conversion efficiency of a solar cell containing a PT buffer layer reached 4.18% under AM 1.5 G irradiation (100 mW/cm(2)).


Assuntos
Fontes de Energia Elétrica , Eletrodos , Polímeros/química , Polímeros/efeitos da radiação , Energia Solar , Tiofenos/química , Tiofenos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Raios Ultravioleta
19.
ACS Appl Mater Interfaces ; 2(2): 351-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20356180

RESUMO

This paper describes the electrochromic properties of a series of poly(3,4-alkylenedioxythiophene) (PXDOT) derivatives featuring various ring sizes and substitutions. The presence of a bulky group on the monomer resulted in a polymer possessing a more-open morphology, which promoted reversible ionic transfer. We used an electrochemical quartz crystal microbalance and cyclic voltammetry to investigate the properties of these polymers. We found that both cations and anions were involved in the charge compensation process. Furthermore, PXDOT derivatives possessing larger ring sizes and/or longer alkyl substituents exhibited less trapping of ions within the polymer during the redox process. The long-term electrochromic stability of these PXDOTs depended strongly on the number of trapped ions. Although the transmittance attenuation of poly(3,4-ethylenedioxythiophene) (PEDOT) decreased from 53 to 42%, we observed no significant decay for poly(diethyl-3,4-dihydro-2H-thieno[3,4-b]-[1,4]dioxepine) (PProDOT-Et(2)) after 400 cycles.

20.
Anal Chem ; 82(5): 1669-73, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20143827

RESUMO

In this study, the exciton lifetime images within the photoactive layers of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are revealed by confocal optical microscopy combined with the fluorescence module. The images reveal that the active layers during slow solvent evaporation provide 3D pathways for charge transport and the concentration gradient through the film which reflects the better cell performance. This technique offers a great help to investigate the 3D optical-physical property without destroying the blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...