Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 412, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902398

RESUMO

CdTeS quantum dots (CdTeS QDs) were synthesized using the hydrothermal method and subsequently modified with (3-aminopropyl)triethoxysilane (APTES). This modification resulted in a significant enhancement of the fluorescence intensity, which was observed to be five times stronger than that of unmodified CdTeS QDs at 597 nm. Only after the fluorescence enhancement by APTES modification, the material showed a response to 1-naphthol (1-NP). Based on this, the molecularly imprinted polymers (MIPs) with ratiometric fluorescence were developed for the detection of 1-NP, that is, the synthetic raw material and the metabolite of the pesticide carbaryl. Under the excitation of 365 nm UV, the bright orange-red fluorescence (597 nm) of CdTeS QDs encapsulated in MIPs was quenched by 1-NP in the suspension, and 1-NP showed a gradually increasing blue emission (460 nm) with the increase of its concentration. This sensor has a good linear relationship between fluorescence intensity ratio (F460/F597) and 1-NP concentration (C1-NP) in a large concentration range (6.0-140.0 µM, LOD=0.45 µM, RSD<4.41%). It exhibits a visible fluorescence change from orange-red to blue-purple. Excellent recoveries in real samples were obtained by simulating carbaryl metabolism and demonstrated its potential in detection of 1-NP and carbaryl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...