Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123243, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154773

RESUMO

Heavy metal pollution caused by acid mine drainage (AMD) is a global environmental concern. The processes of migration and transformation of heavy metals carried by AMD are more complicated in karst areas where carbonate rocks are widely distributed. Water, suspended particulate matter (SPM), and sediments are the crucial media in which heavy metals migrate and it is important to elucidate the geochemical behavior of AMD heavy metals in these environments. This study tracked AMD heavy metals from release to migration and transformation in a natural river system in a karst mining area. AMD directly impacted the hydrochemical composition of the karst water environment, but the carbonate rock naturally neutralized the acidity of the AMD. AMD heavy metal concentrations decreased gradually after the tributaries from the mining area entered the main river, with the metals tending to accumulate in SPM and sediments. The forms in which heavy metals were present were influenced by pH and their relative concentrations. Raman spectroscopy and transmission electron microscopy of sediments from the mining area suggested that the presence of an iron phase plays an important role in the fate of AMD-derived heavy metals. It is, therefore, necessary to elucidate the mechanisms of iron phase precipitation from sediments in order to control AMD-derived heavy metals in karst mining areas. This study improves our understanding of the geochemical behavior of heavy metals in karst environments and provides direction for the prevention and control of AMD in affected areas.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Ferro , Ácidos , China , Carbonatos , Água
2.
Sci Total Environ ; 900: 165856, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37516187

RESUMO

Dissolved inorganic carbon (DIC) in mine water generated during coal mining is a large and potential source of atmospheric CO2, however its geochemical behaviors under the influence of AMD in relation to CO2 degassing and carbonate buffering are not well known. In this study, water temperature, pH, DO, alkalinity, Ca2+ concentration, and the carbon isotope of DIC were measured monthly from November 2020 to November 2021 and carbonate chemistry and CO2 emission flux were calculated to reveal the processes of DIC evolution and CO2 degassing from the Chetian River draining a karst region, which is materially affected by the input of large quantities of AMD. The results showed that carbonate erosion, the mineralization of terrestrial organic matter, and domestic sewage input are all identified to contribute DIC to different degrees to the river. Throughout the year, the Chetian River undergoes high-intensity CO2 degassing, which is dominated by HCO3--neutralized degassing and proton-enhanced degassing in different reaches. The pCO2 in the river under the influence of AMD is as high as 237,482 µatm, while the F-CO2 approaches 316.9 g C m-2 d-1. Meanwhile, the carbonate system in the downstream karst river buffers an average of 85.2 % of DIC release at the river's outlet. The input of AMD significantly altered the carbon cycle of the surface watershed in the headwaters of tributaries, and greatly enhanced the release of CO2 from surface water to the atmosphere; meanwhile, the buffering of carbonates on acidity in the water of main streams causes pCO2 to rapidly reduce over a short distance. Obviously, the carbon emission effect generated by the interaction between AMD and carbonate mainly occurs in the tributary water system. Considering the huge amount of AMD worldwide, this large potential source of atmospheric CO2 requires a specific and precise quantitative analysis based on actual observations.

3.
Sci Total Environ ; 838(Pt 4): 156436, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660609

RESUMO

The mining of medium- to high­sulfur coal in karst areas has led to serious acidification problems in surface water, thus encouraging a re-evaluation of DIC transformation and CO2 source-sink relationships in karst watersheds. The weathering of limestone and sulfide-rich coal measures jointly influence the pH of the Huatan River in karst areas in Southwest China, which is lower in the rainy season and higher in the dry season. Due to CO2 degassing, DIC concentration tends to decrease along the flow direction, while δ13C-DIC gradually becomes heavier. In general, DIC transformation in the Huatan River is controlled by AMD input, CO2 degassing, organic matter (OM) degradation, and the dissolution and precipitation balance of carbonate minerals in different seasons. In spring, the mineralization of OM from terrestrial and domestic sewage gradually enhances and replenishes DIC in the water. As the pH increases in this season, the capacity for buffering CO2 increases. Meanwhile, OM degradation generates a large amount of CO2 in summer, and carbonic acid begins to dissolve limestone. In autumn, the pH decreases due to the enhanced weathering of sulfide-rich coal measures and the mass input of AMD. Thus, the river shows the ability to drive CO2 outgassing. In winter, CO2 degassing gradually weakens, DIC concentration is at its lowest, and δ13C-DIC reaches the heaviest value.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Carbonato de Cálcio , Carbono/análise , Dióxido de Carbono , China , Rios , Sulfetos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...