Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Comput ; 31(12): 2293-2323, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614105

RESUMO

For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.

2.
Neural Comput ; 31(7): 1462-1498, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31120383

RESUMO

In this paper, we analyze the effects of depth and width on the quality of local minima, without strong overparameterization and simplification assumptions in the literature. Without any simplification assumption, for deep nonlinear neural networks with the squared loss, we theoretically show that the quality of local minima tends to improve toward the global minimum value as depth and width increase. Furthermore, with a locally induced structure on deep nonlinear neural networks, the values of local minima of neural networks are theoretically proven to be no worse than the globally optimal values of corresponding classical machine learning models. We empirically support our theoretical observation with a synthetic data set, as well as MNIST, CIFAR-10, and SVHN data sets. When compared to previous studies with strong overparameterization assumptions, the results in this letter do not require overparameterization and instead show the gradual effects of overparameterization as consequences of general results.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...