Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174064, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38889812

RESUMO

Microplastics (MPs) have drawn exponential attention as anthropogenic pollutants, which have invaded every corner of planet. Seamounts are prominent features of the deep-sea topography, acting as breeding ground for marine animal calves and hotspots of pelagic biodiversity, yet MPs pollution in seamounts is scarcely studied. We investigated the MPs load in the whole vertical profile of seamount ambient water in the Subtropical Northwest Pacific Ocean. Based on focal plane array Fourier Transform Infrared spectrometry, MPs were detected in all layers, and varied from 0.9 to 3.8 items L-1, PP and PE were dominant, PA and PET tended to gather at the seamount summit. With depth increasing, small MPs (20-50 µm) were dominant, and MPs surface roughness including crack, hole, and biofouling showed an increase. Three plastic-degrading bacteria were noted in the layers around the seamount, indicating that the seamount community may accelerate MPs aging and further migration. Our work first unveiled the MPs occurrence in the whole vertical profile of the seamount. It reveals that ocean MPs migration and degradation are significantly affected by the unique topography and biotopes of the seamount.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Oceano Pacífico , Poluentes Químicos da Água/análise , Água do Mar/química
2.
Toxicol Lett ; 397: 67-78, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734222

RESUMO

Impairment of the insulin signaling pathway is a key contributor to insulin resistance under arsenic exposure. Specifically, O-GlcNAcylation, an important post-translational modification, plays a crucial role in insulin resistance. Nevertheless, the concrete effect and mechanism of O-GlcNAcylation in arsenic-induced impairment of the insulin signaling pathway remain elusive. Herein, C57BL/6 mice were continuously fed arsenic-containing food, with a total arsenic concentration of 30 mg/kg. We observed that the IRS/Akt/GSK-3ß insulin signaling pathway was impaired, and autophagy was activated in mouse livers and HepG2 cells exposed to arsenic. Additionally, O-GlcNAcylation expression in mouse livers and HepG2 cells was elevated, and the key O-GlcNAcylation homeostasis enzyme, O-GlcNAc transferase (OGT), was upregulated. In vitro, non-targeted metabolomic analysis showed that metabolic disorder was induced, and inhibition of O-GlcNAcylation restored the metabolic profile of HepG2 cells exposed to arsenic. In addition, we found that the compromised insulin signaling pathway was dependent on AMPK activation. Inhibition of AMPK mitigated autophagy activation and impairment of insulin signaling pathway under arsenic exposure. Furthermore, down-regulation of O-GlcNAcylation inhibited AMPK activation, thereby suppressing autophagy activation, and improving the impaired insulin signaling pathway. Collectively, our findings indicate that arsenic can impair the insulin signaling pathway by regulating O-GlcNAcylation homeostasis. Importantly, O-GlcNAcylation inhibition alleviated the impaired insulin signaling pathway by suppressing the AMPK/mTOR-autophagy pathway. This indicates that regulating O-GlcNAcylation may be a potential intervention for the impaired insulin signaling pathway induced by arsenic.


Assuntos
Proteínas Quinases Ativadas por AMP , Arsênio , Autofagia , Regulação para Baixo , Insulina , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Serina-Treonina Quinases TOR/metabolismo , Insulina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação para Baixo/efeitos dos fármacos , Arsênio/toxicidade , Masculino , Resistência à Insulina , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo
3.
Environ Sci Technol ; 58(5): 2247-2259, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179619

RESUMO

Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.


Assuntos
Arsênio , Microbioma Gastrointestinal , Animais , Peixe-Zebra , Fígado/metabolismo , Biotransformação , Metiltransferases/genética , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...