Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Med Sci ; 69(2): 303-311, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986767

RESUMO

PURPOSE: Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis. METHODS: Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry. RESULTS: IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of Col 1a and Col 3a in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues. CONCLUSIONS: IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 â€‹cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.

2.
Circ Res ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011638

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS: In contrast to the post-trans-aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-trans-aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.

3.
Arch Dermatol Res ; 316(5): 176, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758283

RESUMO

Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.


Assuntos
Quimiocina CCL2 , Modelos Animais de Doenças , Jejum , Imiquimode , Monócitos , Psoríase , Animais , Psoríase/imunologia , Psoríase/induzido quimicamente , Psoríase/patologia , Monócitos/imunologia , Monócitos/metabolismo , Camundongos , Jejum/sangue , Quimiocina CCL2/metabolismo , Células Th17/imunologia , Interleucina-17/metabolismo , Pele/patologia , Pele/imunologia , Humanos , Camundongos Endogâmicos C57BL , Masculino , Proliferação de Células , Restrição Calórica , Jejum Intermitente
4.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731452

RESUMO

In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 µM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.


Assuntos
Acetilcolinesterase , Corantes Fluorescentes , Animais , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Limite de Detecção , Peixe-Zebra
6.
Small ; 19(21): e2207334, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869411

RESUMO

Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of α-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N'-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 × 10-6 -2.7 × 10-5 S m-1 because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.

7.
Circ Res ; : 101161CIRCRESAHA122320538, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35861735

RESUMO

BACKGROUND: Cardiac fibrosis is a common pathological feature associated with adverse clinical outcome in postinjury remodeling and has no effective therapy. Using an unbiased transcriptome analysis, we identified FMO2 (flavin-containing monooxygenase 2) as a top-ranked gene dynamically expressed following myocardial infarction (MI) in hearts across different species including rodents, nonhuman primates, and human. However, the functional role of FMO2 in cardiac remodeling is largely unknown. METHODS: Single-nuclei transcriptome analysis was performed to identify FMO2 after MI; FMO2 ablation rats were generated both in genetic level using the CRISPR-cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) technology and lentivirus-mediated manner. Gain-of-function experiments were conducted using postn-promoter FMO2, miR1a/miR133a-FMO2 lentivirus, and enzymatic activity mutant FMO2 lentivirus after MI. RESULTS: A significant downregulation of FMO2 was consistently observed in hearts after MI in rodents, nonhuman primates, and patients. Single-nuclei transcriptome analysis showed cardiac expression of FMO2 was enriched in fibroblasts rather than myocytes. Elevated spontaneous tissue fibrosis was observed in the FMO2-null animals without external stress. In contrast, fibroblast-specific expression of FMO2 markedly reduced cardiac fibrosis following MI in rodents and nonhuman primates associated with diminished SMAD2/3 phosphorylation. Unexpectedly, the FMO2-mediated regulation in fibrosis and SMAD2/3 signaling was independent of its enzymatic activity. Rather, FMO2 was detected to interact with CYP2J3 (cytochrome p450 superfamily 2J3). Binding of FMO2 to CYP2J3 disrupted CYP2J3 interaction with SMURF2 (SMAD-specific E3 ubiquitin ligase 2) in cytosol, leading to increased cytoplasm to nuclear translocation of SMURF2 and consequent inhibition of SMAD2/3 signaling. CONCLUSIONS: Loss of FMO2 is a conserved molecular signature in postinjury hearts. FMO2 possesses a previously uncharacterized enzyme-independent antifibrosis activity via the CYP2J3-SMURF2 axis. Restoring FMO2 expression exerts potent ameliorative effect against fibrotic remodeling in postinjury hearts from rodents to nonhuman primates. Therefore, FMO2 is a potential therapeutic target for treating cardiac fibrosis following injury.

8.
Exp Ther Med ; 22(6): 1431, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34707712

RESUMO

An increasing number of individuals are suffering from lower back and neck pain caused by intervertebral disc degeneration each year. Although the application of mesenchymal stem cells (MSCs) has provided desirable results in the treatment of intervertebral disc degeneration, there are multiple risks associated with the directed application of MSCs. An increasing number of studies have suggested that stem cells, through the release of extracellular nanovesicles, have vital functions in tissue regeneration and repair with low risk. The present study investigated the effect of extracellular nanovesicles derived from adipose-derived stem cells (ADSCs) on nucleus pulposus (NP) cells from patients with intervertebral disc degeneration. Human NP cells were obtained from patients with intervertebral disc degeneration undergoing surgical procedures in addition to ADSCs from liposuction patients. ADSC-derived extracellular nanovesicles were isolated and characterized. The differentiation and biological activity of NP cells cultured with or without ADSC-derived extracellular nanovesicles were assessed and inflammatory factors and intervertebral disc degeneration-associated markers were also measured. The results indicated that extracellular nanovesicles derived from ADSCs increased the migration and proliferation of NP cells and inhibited inflammatory activity, suggesting their utility for the treatment of intervertebral disc degeneration.

9.
J Mol Cell Cardiol ; 161: 130-138, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34400182

RESUMO

BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes. OBJECTIVE: To improve the electrophysiological maturation of hiPSC-CMs. METHODS AND RESULTS: On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 µmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 µM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration. CONCLUSION: T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.


Assuntos
Dexametasona/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/genética , Tri-Iodotironina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Análise de Célula Única
10.
Sci China Life Sci ; 64(2): 255-268, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32648190

RESUMO

Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cálcio/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Hibridização In Situ , Microscopia Confocal , Mutação , Miócitos Cardíacos/citologia , Organogênese/genética , Trocador de Sódio e Cálcio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Acta Pharmacol Sin ; 41(12): 1576-1586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037404

RESUMO

Type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) regulates the intracellular Ca2+ release from endoplasmic reticulum in human embryonic stem cells (hESCs), cardiovascular progenitor cells (CVPCs), and mammalian cardiomyocytes. However, the role of IP3R2 in human cardiac development is unknown and its function in mammalian cardiomyocytes is controversial. hESC-derived cardiomyocytes have unique merits in disease modeling, cell therapy, and drug screening. Therefore, understanding the role of IP3R2 in the generation and function of human cardiomyocytes would be valuable for the application of hESC-derived cardiomyocytes. In the current study, we investigated the role of IP3R2 in the differentiation of hESCs to cardiomyocytes and in the hESC-derived cardiomyocytes. By using IP3R2 knockout (IP3R2KO) hESCs, we showed that IP3R2KO did not affect the self-renewal of hESCs as well as the differentiation ability of hESCs into CVPCs and cardiomyocytes. Furthermore, we demonstrated the ventricular-like myocyte characteristics of hESC-derived cardiomyocytes. Under the α1-adrenergic stimulation by phenylephrine (10 µmol/L), the amplitude and maximum rate of depolarization of action potential (AP) were slightly affected in the IP3R2KO hESC-derived cardiomyocytes at differentiation day 90, whereas the other parameters of APs and the Ca2+ transients did not show significant changes compared with these in the wide-type ones. These results demonstrate that IP3R2 has minimal contribution to the differentiation and function of human cardiomyocytes derived from hESCs, thus provide the new knowledge to the function of IP3R2 in the generation of human cardiac lineage cells and in the early cardiomyocytes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Baixo , Humanos , Receptores Adrenérgicos alfa 1/metabolismo
12.
J Clin Invest ; 130(10): 5287-5301, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573492

RESUMO

In the mammalian heart, the left ventricle (LV) rapidly becomes more dominant in size and function over the right ventricle (RV) after birth. The molecular regulators responsible for this chamber-specific differential growth are largely unknown. We found that cardiomyocytes in the neonatal mouse RV had lower proliferation, more apoptosis, and a smaller average size compared with the LV. This chamber-specific growth pattern was associated with a selective activation of p38 mitogen-activated protein kinase (MAPK) activity in the RV and simultaneous inactivation in the LV. Cardiomyocyte-specific deletion of both the Mapk14 and Mapk11 genes in mice resulted in loss of p38 MAPK expression and activity in the neonatal heart. Inactivation of p38 activity led to a marked increase in cardiomyocyte proliferation and hypertrophy but diminished cardiomyocyte apoptosis, specifically in the RV. Consequently, the p38-inactivated hearts showed RV-specific enlargement postnatally, progressing to pulmonary hypertension and right heart failure at the adult stage. Chamber-specific p38 activity was associated with differential expression of dual-specific phosphatases (DUSPs) in neonatal hearts, including DUSP26. Unbiased transcriptome analysis revealed that IRE1α/XBP1-mediated gene regulation contributed to p38 MAPK-dependent regulation of neonatal cardiomyocyte proliferation and binucleation. These findings establish an obligatory role of DUSP/p38/IRE1α signaling in cardiomyocytes for chamber-specific growth in the postnatal heart.


Assuntos
Coração/crescimento & desenvolvimento , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Animais , Animais Recém-Nascidos , Apoptose , Proliferação de Células , Tamanho Celular , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/enzimologia , Ventrículos do Coração/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Especificidade de Órgãos , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
13.
Stem Cell Res Ther ; 11(1): 196, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448362

RESUMO

BACKGROUND: Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS: We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS: The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS: These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box , Proteínas de Transporte , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas Nucleares , TATA Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
14.
Anal Chem ; 90(8): 5481-5488, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29526094

RESUMO

A new type of fluorescent probe capable of detecting a sulfur mustard (SM) simultant at a concentration of 1.2 µM in solution and 0.5 ppm in the gas phase has been developed. Owing to its molecular structure with a thiocarbonyl component and two piperidyl moieties integrated into the xanthene molecular skeleton, this probe underwent a highly selective nucleophilic reaction with the SM simultant and generated a thiopyronin derivative emitting intensive pink fluorescence. The distinct difference in electronic structure between the probe and thiopyronin derivative generated a marked shift of the absorption band from 445 to 567 nm, which enabled an optimal wavelength propitious for exciting the thiopyronin derivative but adverse to the probe. Such efficient separation of the excitation wavelength and tremendous increase in fluorescence quantum yield, from less than 0.002 to 0.53, upon conversion from the probe to the thiopyronin derivative, jointly led to a distinct contrast in the beaconing fluorescence signal (up to 850-fold) and therefore the unprecedented sensitivity for detecting SM species.

15.
Talanta ; 183: 164-171, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567159

RESUMO

A new type of colorimetric, fluorescent palladium (Pd) probe characterized with beaconing fluorescence signal in the quiet near-infrared (NIR) region (centered ~ 717 nm), recognition response time of approximately 3 min, limit of detection (LOD) down to 5.1 ppb, and excellent recognition specificity over a wide range of interfering metal cations was developed. It is believed that the probe underwent sequential Pd0-mediated oxidative addition and reduction elimination reactions, yielding typical D-π-A molecular skeleton of the final reaction product capable of intramolecular charge transfer (ICT). The benzothiazole moiety of the probe molecular skeleton is believed to play a vital trole in shifting the beaconing fluorescence signal to the quiet NIR region and accelerating the Pd0 recognition process of the probe via the formation of the fluorescent reaction product with largely extended π-delocalization. With unique advantages, the fluorescent probe we developed will find practical applications for detecting residual Pd with concentration below the safety margin in pharmacy and biomedical engineering.

16.
Circ Res ; 122(7): 958-969, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29343525

RESUMO

RATIONALE: Human pluripotent stem cell-derived cardiovascular progenitor cells (hPSC-CVPCs) should be thoroughly investigated in large animal studies before testing in clinical trials. OBJECTIVE: The main of this study is to clarify whether hPSC-CVPCs can engraft for long time in the heart of primates after myocardial infarction (MI) and compare the effectiveness and safety of immunosuppression with cyclosporine alone or multiple-drug regimen (MDR) containing cyclosporine, methylprednisolone, and basiliximab in cynomolgus monkeys that had received intramyocardial injections of 1×107 EGFP (enhanced green fluorescent protein)-expressing hPSC-CVPCs after MI. A third group of animals received the immunosuppression MDR but without cell therapy after MI (MI+MDR group). METHODS AND RESULTS: Measurements of EGFP gene levels and EGFP immunofluorescence staining indicated that the hPSC-CVPC engraftment rate was greater in the MI+MDR+CVPC group than that in the MI+cyclosporine+CVPC group. However, even in the MI+MDR+CVPC group, no transplanted cells could be detected at 140 days after transplantation. Concomitantly, immunofluorescent analysis of CD3, CD4, and CD8 expression indicated that T-lymphocyte infiltration in the CVPC-transplanted hearts was less in the MDR-treated animals than in the cyclosporine-alone-treated animals. The recovery of left ventricular function on day 28 post-MI in the MI+MDR+CVPC group was better than that in the MI+MDR group. Apoptotic cardiac cells were also less common in the MI+MDR+CVPC group than in the MI+MDR group, although both immunosuppression regimens were associated with transient hepatic dysfunction. CONCLUSIONS: This is the largest study of hPSCs in nonhuman primates in cardiovascular field to date (n=32). Compared with cyclosporine alone, MDR attenuates immune rejection and improves survival of hPSC-CVPCs in primates; this is associated with less apoptosis of native cardiac cells and better recovery of left ventricular function at 28 days. However, even with MDR, transplanted hPSC-CVPCs do not engraft and do not survive at 140 days after transplantation, thereby excluding remuscularization as a mechanism for the functional effect.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Desenvolvimento Muscular , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Animais , Linhagem Celular , Ciclosporina/administração & dosagem , Ciclosporina/efeitos adversos , Humanos , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Macaca fascicularis , Masculino , Mioblastos Cardíacos/citologia , Transplante de Células-Tronco/efeitos adversos
17.
Acta Pharmacol Sin ; 38(12): 1663-1672, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28713161

RESUMO

Emerging evidence suggests that Ca2+ signals are important for the self-renewal and differentiation of human embryonic stem cells (hESCs). However, little is known about the physiological and pharmacological properties of the Ca2+-handling machinery in hESCs. In this study we used RT-PCR and Western blotting to analyze the expression profiles of genes encoding Ca2+-handling proteins; we also used confocal Ca2+ imaging and pharmacological approaches to determine the contribution of the Ca2+-handling machinery to the regulation of Ca2+ signaling in hESCs. We revealed that hESCs expressed pluripotent markers and various Ca2+-handling-related genes. ATP-induced Ca2+ transients in almost all hESCs were inhibited by the inositol-1,4,5-triphosphate receptor (IP3R) blocker 2-APB or xestospongin C. In addition, Ca2+ transients were induced by a ryanodine receptor (RyR) activator, caffeine, in 10%-15% of hESCs and were blocked by ryanodine, whereas caffeine and ATP did not have additive effects. Moreover, store-operated Ca2+ entry (SOCE) but not voltage-operated Ca2+ channel-mediated Ca2+ entry was observed. Inhibition of sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) by thapsigargin induced a significant increase in the cytosolic free Ca2+ concentration ([Ca2+]i). For the Ca2+ extrusion pathway, inhibition of plasma membrane Ca2+ pumps (PMCAs) by carboxyeosin induced a slow increase in [Ca2+]i, whereas the Na+/Ca2+ exchanger (NCX) inhibitor KBR7943 induced a rapid increase in [Ca2+]i. Taken together, increased [Ca2+]i is mainly mediated by Ca2+ release from intracellular stores via IP3Rs. In addition, RyRs function in a portion of hESCs, thus indicating heterogeneity of the Ca2+-signaling machinery in hESCs; maintenance of low [Ca2+]i is mediated by uptake of cytosolic Ca2+ into the ER via SERCA and extrusion of Ca2+ out of cells via NCX and PMCA in hESCs.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Trifosfato de Adenosina/farmacologia , Compostos de Boro/farmacologia , Cálcio/análise , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Compostos Macrocíclicos/farmacologia , Oxazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
18.
J Mol Cell Biol ; 9(4): 274-288, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419336

RESUMO

Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.


Assuntos
Diferenciação Celular , Hematopoese , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
19.
J Biomed Mater Res A ; 105(4): 1094-1104, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28085215

RESUMO

Human embryonic stem cell-derived cardiovascular progenitor cells (hESC-CVPCs) hold great promise for cell-based therapies of heart diseases. However, little is known about their niche microenvironment and in particular the required extracellular matrix (ECM) components. Here we screened combinations of surface-immobilized ECM proteins to identify substrates that support the attachment and survival of hESC-CVPCs. Covalent immobilization of ECM proteins laminin (Lm), fibronectin (Fn), collagen I (CI), collagen III (CIII), and collagen IV (CIV) in multiple combinations and concentrations was achieved by reductive amination on transparent acetaldehyde plasma polymer (AAPP) interlayer coatings. We identified that CI, CIII, CIV, and Fn and their combinations were important for hESC-CVPC attachment and survival, while Lm was dispensable. Moreover, for coatings displaying single ECM proteins, CI and CIII performed better than CIV and Fn, while coatings displaying the combined ECM proteins CIII + CIV and Fn + CIII + CIV at 100 µg/mL were comparable to Matrigel in regard to supporting hESC-CVPC attachment and viability. Our results identify ECM proteins required for hESC-CVPCs and demonstrate that coatings displaying multiple immobilized ECM proteins offer a suitable microenvironment for the attachment and survival of hESC-CVPCs. This knowledge contributes to the development of approaches for maintaining hESC-CVPCs and therefore to advances in cardiovascular regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1094-1104, 2017.


Assuntos
Diferenciação Celular , Proteínas da Matriz Extracelular/química , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular , Humanos , Proteínas Imobilizadas/química
20.
Purinergic Signal ; 12(3): 465-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27098757

RESUMO

Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca(2+) signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca(2+) mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca(2+) responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca(2+) transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca(2+) signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca(2+) transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca(2+) responses while ATP-induced Ca(2+) responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca(2+) mobilization between these cells.


Assuntos
Sinalização do Cálcio/fisiologia , Sistema Cardiovascular/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Imuno-Histoquímica , Microscopia Confocal , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...