Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 623, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245518

RESUMO

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.


Assuntos
Luz , Prótons , Transporte de Elétrons , Conformação Molecular , Flavinas/química , Proteínas de Bactérias/metabolismo
2.
J Am Chem Soc ; 145(6): 3394-3400, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722850

RESUMO

Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.


Assuntos
Luz , Prótons , Análise Espectral , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...