Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821796

RESUMO

Considering public health and environmental safety, the development of reliable and efficient monitoring methods is essential to ensure food quality and safety. Herein, a new Cu-based metal organic framework (Cu-ICA) nanocrystal with ammonia-sensitive performance was built up and then introduced as a functional compatibilizer of starch/polyvinyl alcohol (STA/PVA) blend to develop high-performance intelligent packaging films for food freshness monitoring. The introduction of Cu-ICA upgraded the compatibility, mechanical strength (42.9 MPa), UV-protection (with UV transmittance of only 2.8 %), and moisture/oxygen barrier performances of STA/PVA film. Furthermore, the developed STA/PVA/Cu-ICA films presented long-term colour stability, outstanding antibacterial efficacy (over 99.5 %) toward both Escherichia coli and Staphylococcus aureus bacteria, as well as remarkable ammonia-sensitive discoloration capability. The STA/PVA/Cu-ICA films possessed visually identifiable colour change during the monitoring of shrimp spoilage. These findings indicate that the developed STA/PVA/Cu-ICA film possesses tremendous potential as an intelligent active packaging material.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Embalagem de Alimentos , Álcool de Polivinil , Staphylococcus aureus , Amido , Embalagem de Alimentos/métodos , Álcool de Polivinil/química , Amido/química , Cobre/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas/química , Estruturas Metalorgânicas/química , Qualidade dos Alimentos , Amônia/química
2.
Carbohydr Polym ; 316: 121045, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321738

RESUMO

Nowadays, there is an increasing demand for smart packaging materials capable of effectively monitoring the food freshness. In this study, new Co-based MOF (Co-BIT) microcrystals with ammonia-sensitivity and antibacterial function were constructed and then loaded within cellulose acetate (CA) matrix to create smart active packaging materials. The influences of Co-BIT loading upon structure, physical, and functional properties of the CA films were then thoroughly explored. It was observed that microcrystalline Co-BIT was uniformly integrated inside CA matrix, which caused significant promotions in mechanical strength (from 24.12 to 39.76 MPa), water barrier (from 9.32 × 10-6 to 2.73 × 10-6 g/m·h·Pa) and ultraviolet light protection performances of CA film. Additionally, the created CA/Co-BIT films displayed striking antibacterial efficacy (>95.0 % for both Escherichia coli and Staphylococcus aureus), favorable ammonia-sensitivity function as well as color stability. Finally, the CA/Co-BIT films were successfully applied for indicating the spoilage of shrimp through discernible color changes. These findings suggest that Co-BIT loaded CA composite films have great potential for use as smart active packaging.


Assuntos
Amônia , Embalagem de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Celulose/química
3.
Carbohydr Polym ; 302: 120375, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604053

RESUMO

There is a growing demand for the development of intelligent active packaging films to maintain and monitor the freshness of meat food. Herein, nano Co-based MOF (ZIF67) with ammonia-sensitive and antimicrobial functions was successfully synthesized and then integrated into cellulose acetate (CA) matrix to prepare intelligent active films. The impacts of ZIF67 incorporation on the structure, physical and functional characteristics of CA film were fully investigated. The results demonstrated that the ZIF67 nanofillers were evenly dispersed in CA matrix, resulting in remarkable improvement on tensile strength, toughness, thermal stability, UV barrier, hydrophobicity and water vapor barrier ability of CA film. Furthermore, the prepared CA/ZIF67 films exhibited superb antimicrobial and ammonia-sensitive functions. The CA/ZIF67 intelligent films turned their color from blue at beginning to brown during progressive spoilage of shrimp. These results revealed that the CA/ZIF67 films with excellent antimicrobial and ammonia-sensitive functions could be applied in intelligent active food packaging.


Assuntos
Amônia , Anti-Infecciosos , Amônia/química , Alimentos Marinhos , Carne , Embalagem de Alimentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antocianinas/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...