Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(29): e202405062, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711169

RESUMO

Palladium-catalyzed enantioselective C(sp3)-H functionalization reactions has attracted considerable attention due to its ability for the synthesis of enantiomerically enriched molecules and stimulation of novel retrosynthetic disconnections. Understanding the reaction mechanism, especially the stereochemical process of the reaction, is crucial for the rational design of more efficient catalytic systems. Previously, we developed a Pd(II)/sulfoxide-2-hydroxypridine (SOHP) catalytic system for asymmetric C(sp3)-H functionalization reactions. In this study, we focused on unraveling the chemistry of chiral palladacycles involved in the Pd(II)-catalyzed enantioselective C(sp3)-H functionalization. We have isolated key palladacycle intermediates involved in the enantioselective ß-C(sp3)-H arylation of carboxylic acids catalyzed by the Pd(II)/SOHP system. These palladacycles, exhibiting ligand-induced chirality, provided a significant opportunity to investigate the stereochemical process and the ligand effect in this asymmetric C-H functionalization. Our investigation provided direct evidence for the C-H palladation step as the enantioselectivity-determining step, which forms diastereomeric palladacycles that exhibited preservation of chirality in the functionalization step. DFT calculations provided insights into the chiral induction in palladacycle formation. This work highlights the value of chiral palladacycle chemistry in offering mechanistic insights into the Pd(II)-catalyzed asymmetric C(sp3)-H functionalization reactions.

2.
Int J Biol Macromol ; 239: 124244, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001783

RESUMO

RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.


Assuntos
Oligonucleotídeos , RNA , Humanos , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica/métodos , RNA/química , Espectroscopia de Ressonância Magnética
3.
ACS Chem Biol ; 17(9): 2448-2460, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36069699

RESUMO

Pulsed electron-electron double resonance (PELDOR) spectroscopy, X-ray scattering interferometry (XSI), and single-molecule Förster resonance energy transfer (smFRET) are molecular rulers that provide inter- or intramolecular pair-wise distance distributions in the nanometer range, thus being ideally suitable for structural and dynamic studies of biomolecules including RNAs. The prerequisite for such applications requires site-specific labeling of biomolecules with spin labels, gold nanoparticles, and fluorescent tags, respectively. Recently, site-specific labeling of large RNAs has been achieved by a combination of transcription of an expanded genetic alphabet containing A-T/G-C base pairs and NaM-TPT3 unnatural base pair (UBP) with post-transcriptional modifications at UBP bases by click chemistry or amine-NHS ester reactions. However, due to the bulky sizes of functional groups or labeling probes used, such strategies might cause structural perturbation and decrease the accuracy of distance measurements. Here, we synthesize an α-thiophosphorylated variant of rTPT3TP (rTPT3αS), which allows for post-transcriptional site-specific labeling of large RNAs at the internal α-phosphate backbone via maleimide-modified probes. Subsequent PELDOR, XSI, and smFRET measurements result in narrower distance distributions than labeling at the TPT3 base. The presented strategy provides a new route to empower the molecular rulers for structural and dynamic studies of large RNA and its complex.


Assuntos
Ouro , Nanopartículas Metálicas , Aminas , Espectroscopia de Ressonância de Spin Eletrônica , Ésteres , Ouro/química , Maleimidas , Fosfatos , RNA , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...