Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731464

RESUMO

Artificially modified adsorbing materials mainly aim to remedy the disadvantages of natural materials as much as possible. Using clay materials such as rectorite, sodium bentonite and metakaolinite (solid waste material) as base materials, hydrothermally modified and unmodified materials were compared. CM-HT and CM (adsorbing materials) were prepared and used to adsorb and purify wastewater containing malachite green (MG) dye, and the two materials were characterized through methods such as BET, FT-IR, SEM and XRD. Results: (1) The optimal conditions for hydrothermal modification of CM-HT were a temperature of 150 °C, a time of 2 h, and a liquid/solid ratio 1:20. (2) Hydrothermal modification greatly increased the adsorptive effect. The measured maximum adsorption capacity of CM-HT for MG reached 290.45 mg/g (56.92% higher than that of CM). The theoretical maximum capacity was 625.15 mg/g (186.15% higher than that of CM). (3) Because Al-OH and Si-O-Al groups were reserved in unmodified clay mineral adsorbing materials with good adsorbing activity, after hydrothermal modification, the crystal structure of the clay became loosened along the direction of the c axis, and the interlayer space increased to partially exchange interlayer metal cations connected to the bottom oxygen, giving CM-HT higher electronegativity and creating more crystal defects and chemically active adsorbing sites for high-performance adsorption. (4) Chemical adsorption was the primary way by which CM-HT adsorbed cationic dye, while physical adsorption caused by developed pore canal was secondary. The adsorption reaction occurred spontaneously.

2.
Huan Jing Ke Xue ; 29(12): 3496-502, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19256391

RESUMO

One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Metais Pesados/análise , Poluentes do Solo/análise , Solo/análise , China , Monitoramento Ambiental , Sistemas de Informação Geográfica , Fenômenos Geológicos , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...