Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4612-4622, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631727

RESUMO

The mechanical durability of superhydrophobic surfaces is of significance for their practical applications. However, few reports about superhydrophobic coating on certain substrates took into consideration both the mechanical stability of the superhydrophobic coating and adhesion stability between the coating and the substrate. Herein, we put forward a facile and efficient strategy to construct robust superhydrophobic coatings by simply spray-coating a composite suspension of SiO2 nanoparticles, polydimethylsiloxane (PDMS), and epoxy resin (EP) on substrates pretreated with an EP base-coating. The as-obtained coating exhibited excellent superhydrophobicity with water contact angle of 163° and sliding angle of 3.5°, which could endure UV irradiation of 180 h, immersion in acidic or basic solutions for 168 h, and outdoor exposure for over 30 days. Notably, the coating surface retained superhydrophobicity after being successively impacted with faucet water for 1 h, impinged with 360 g sand grains, and abraded with sandpaper of 120 grid under a load of 500 g for 5 m distance. The outstanding mechanical stability was mainly attributed to the cross-linking of EP and the elastic nature of PDMS which ensured strong cohesion inside the whole coating and to the substrate. Additionally, the coating showed self-healing capacity against O2 plasma etching. The method is simple with the materials commercially available and is expected to be widely applied in outdoor applications.

2.
ACS Appl Mater Interfaces ; 14(45): 51307-51317, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320188

RESUMO

Passive daytime radiative cooling (PDRC) technology provides an eco-friendly cooling strategy by reflecting sunlight reaching the surface and radiating heat underneath to the outer space through the atmospheric transparency window. However, PDRC materials face challenges in cooling performance degradation caused by outdoor contamination and requirements of easy fabrication approaches for scale-up and high cooling efficiency. Herein, a polymer composite coating of polystyrene, polydimethylsiloxane and poly(ethyl cyanoacrylate) (PS/PDMS/PECA) with superhydrophobicity and radiative cooling performance was fabricated and demonstrated to have sustained radiative cooling capability, utilizing the superhydrophobic self-cleaning property to maintain the optical properties of the coating surface. The prepared coating is hierarchically porous which exhibits an average solar reflectance of 96% with an average emissivity of 95% and superhydrophobicity with a contact angle of 160°. The coating realized a subambient radiative cooling of 12.9 °C in sealed air and 7.5 °C in open air. The self-cleaning property of the PS/PDMS/PECA coating helped sustain the cooling capacity for long-term outdoor applications. Moreover, the coating exhibited chemical resistance, UV resistance, and mechanical durability, which has promising applications in wider fields.

3.
RSC Adv ; 10(18): 10758-10763, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492934

RESUMO

Functionalization of synthetic suede materials with excellent superhydrophobicity can expand their application ranges. Superhydrophobic synthetic suede was obtained by coating with polydimethylsiloxane (PDMS) and octadecyltrichlorosilane (OTS). Utilizing the synthetic suede effect of the fibrous rough structures in combination with the low surface energy micro-nano rough structure on fibers resulting from PDMS and OTS, the surface was easily turned superhydrophobic with self-cleaning properties. Abrasion tests showed that the superhydrophobic synthetic suede has excellent superhydrophobic performance after more than 2000 severe abrasion tests. This research provides a facile strategy for the preparation of practical superhydrophobic synthetic suede materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...