Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(53): 33192-33201, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497528

RESUMO

Activated carbon xerogel monoliths were prepared from resorcinol and formaldehyde via a catalyst-free and template-free hydrothermal polycondensation reaction, followed by pyrolysis and activation. The ratio of resorcinol (R) to distilled water (W) was varied to afford an interconnected pore structure with controlled pore size, while the pyrolysis temperature was optimized to give high specific surface area. Activation was carried out at 700 °C after soaking the samples in 6 M KOH aqueous solution. The same process, called "heat treatment", was also carried out without soaking in KOH for comparison. The weight loss upon pyrolysis, activation and heat treatment and the weight gain via KOH soaking were measured. Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and an N2 sorption instrument were utilized for characterization. Additionally, electrochemical properties were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) with a 3-electrode system, while a 2-electrode system was also employed for selected samples. The highest specific capacitance of 323 F g-1 via GCD at 1 A g-1 was obtained at the R/W ratio of 45 and with 500 °C pyrolysis. In addition, this sample also exhibited 89.4% retention at 20 A g-1 in the current density variation and 100% retention in 5000 cycling tests.

2.
RSC Adv ; 11(61): 38515-38522, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493259

RESUMO

Activated carbon monoliths of kenaf (ACMKs) were prepared by moulding kenaf fibers into a column-shape monolith and then carrying out pyrolysis at 500, 600, 700 or 800 °C, followed by activation with KOH at 700 °C. Then, the sample was characterized using thermogravimetric analyzer (TGA), field-emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and N2 sorption instruments. The prepared ACMK was subjected to electrochemical property evaluation via cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The GCD study using a three-electrode system showed that the specific capacitance decreased with higher pyrolysis temperature (PYT) with the ACMK pyrolyzed at 500 °C (ACMK-500) exhibiting the highest specific capacitance of 217 F g-1. A two-electrode system provided 95.9% retention upon a 5000 cycle test as well as the specific capacitance of 212 F g-1, being converted to an energy density of 6 W h kg-1 at a power density of 215 W kg-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...