Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Neuroimage ; 289: 120540, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355076

RESUMO

INTRODUCTION: Functional brain networks (FBNs) coordinate brain functions and are studied in fMRI using blood-oxygen-level-dependent (BOLD) signal correlations. Previous research links FBN changes to aging and cognitive decline, but various physiological factors influnce BOLD signals. Few studies have investigated the intrinsic components of the BOLD signal in different timescales using signal decomposition. This study aimed to explore differences between intrinsic FBNs and traditional BOLD-FBN, examining their associations with age and cognitive performance in a healthy cohort without dementia. MATERIALS AND METHODS: A total of 396 healthy participants without dementia (men = 157; women = 239; age range = 20-85 years) were enrolled in this study. The BOLD signal was decomposed into several intrinsic signals with different timescales using ensemble empirical mode decomposition, and FBNs were constructed based on both the BOLD and intrinsic signals. Subsequently, network features-global efficiency and local efficiency values-were estimated to determine their relationship with age and cognitive performance. RESULTS: The findings revealed that the global efficiency of traditional BOLD-FBN correlated significantly with age, with specific intrinsic FBNs contributing to these correlations. Moreover, local efficiency analysis demonstrated that intrinsic FBNs were more meaningful than traditional BOLD-FBN in identifying brain regions related to age and cognitive performance. CONCLUSIONS: These results underscore the importance of exploring timescales of BOLD signals when constructing FBN and highlight the relevance of specific intrinsic FBNs to aging and cognitive performance. Consequently, this decomposition-based FBN-building approach may offer valuable insights for future fMRI studies.


Assuntos
Mapeamento Encefálico , Demência , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia
2.
Front Aging Neurosci ; 15: 1195424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674782

RESUMO

Aims: Our aim was to differentiate patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from cognitively normal (CN) individuals and predict the progression from MCI to AD within a 3-year longitudinal follow-up. A newly developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state EEG (rsEEG), and features were extracted and subjected to machine learning algorithms. Methods: A total of 205 participants were recruited from three hospitals, with CN (n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1, MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3, MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients (CDR = 0.5) were longitudinally followed up with two rsEEG recordings within 3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG data, and features were extracted and subjected to machine-learning algorithms. Results: (a) At the group level analysis, the HHSA contrast of MCI and different stages of AD showed augmented amplitude modulation (AM) power of lower-frequency oscillations (LFO; delta and theta bands) with attenuated AM power of higher-frequency oscillations (HFO; beta and gamma bands) compared with cognitively normal elderly controls. The alpha frequency oscillation showed augmented AM power across MCI to AD1 with a reverse trend at AD2. (b) At the individual level of cross-sectional analysis, implementation of machine learning algorithms discriminated between groups with good sensitivity (Sen) and specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs. AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3: 0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted HHSA between MCI-S and MCI-C groups showed significantly attenuated AM power of alpha and beta band oscillations. (d) At the individual level analysis of longitudinal MCI groups, deploying machine learning algorithms with the best seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM) classifier, with a specificity of 0.8 yielded by the decision tree classifier. Conclusion: Integrating HHSA into EEG signals and machine learning algorithms can differentiate between CN and MCI as well as also predict AD progression at the MCI stage.

3.
Opt Lett ; 48(15): 4161-4164, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527143

RESUMO

Holography based on Kramers-Kronig relations (KKR) is a promising technique due to its high-space-bandwidth product. However, the absence of an iterative process limits its noise robustness, primarily stemming from the lack of a regularization constraint. This Letter reports a generalized framework aimed at enhancing the noise robustness of KKR holography. Our proposal involves employing the Hilbert-Huang transform to connect the real and imaginary parts of an analytic function. The real part is initially processed by bidimensional empirical mode decomposition into a series of intrinsic mode functions (IMFs) and a residual term. They are then selected to remove the noise and bias terms. Finally, the imaginary part can be obtained using the Hilbert transform. In this way, we efficiently suppress the noise in the synthetic complex function, facilitating high-fidelity wavefront reconstruction using ∼20% of the exposure time required by existing methods. Our work is expected to expand the applications of KKR holography, particularly in low phototoxicity biological imaging and other related scenarios.

4.
Sci Rep ; 13(1): 14252, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653059

RESUMO

Electrophysiological working memory (WM) research shows brain areas communicate via macroscopic oscillations across frequency bands, generating nonlinear amplitude modulation (AM) in the signal. Traditionally, AM is expressed as the coupling strength between the signal and a prespecified modulator at a lower frequency. Therefore, the idea of AM and coupling cannot be studied separately. In this study, 33 participants completed a color recall task while their brain activity was recorded through EEG. The AM of the EEG data was extracted using the Holo-Hilbert spectral analysis (HHSA), an adaptive method based on the Hilbert-Huang transforms. The results showed that WM load modulated parieto-occipital alpha/beta power suppression. Furthermore, individuals with higher frontal theta power and lower parieto-occipital alpha/beta power exhibited superior WM precision. In addition, the AM of parieto-occipital alpha/beta power predicted WM precision after presenting a target-defining probe array. The phase-amplitude coupling (PAC) between the frontal theta phase and parieto-occipital alpha/beta AM increased with WM load while processing incoming stimuli, but the PAC itself did not predict the subsequent recall performance. These results suggest frontal and parieto-occipital regions communicate through theta-alpha/beta PAC. However, the overall recall precision depends on the alpha/beta AM following the onset of the retro cue.


Assuntos
Gastrópodes , Memória de Curto Prazo , Humanos , Animais , Dinâmica não Linear , Encéfalo , Eletrofisiologia Cardíaca , Eletroencefalografia
5.
IEEE J Biomed Health Inform ; 27(7): 3657-3665, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071521

RESUMO

Causal inference in the field of infectious disease attempts to gain insight into the potential causal nature of an association between risk factors and diseases. Simulated causality inference experiments have shown preliminary promise in improving understanding of the transmission of infectious diseases but still lack sufficient quantitative causal inference studies based on real-world data. Here, we investigate the causal interactions between three different infectious diseases and related factors, using causal decomposition analysis, to characterize the nature of infectious disease transmission. We show that the complex interactions between infectious disease and human behavior have a quantifiable impact on transmission efficiency of infectious diseases. Our findings, by shedding light on the underlying transmission mechanism of infectious diseases, suggest that causal inference analysis is a promising approach to determine epidemiological interventions.


Assuntos
Doenças Transmissíveis , Humanos , Causalidade , Doenças Transmissíveis/epidemiologia , Fatores de Risco
6.
Neuroscience ; 519: 177-197, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36966877

RESUMO

Anxiety and mindfulness are two inversely linked traits shown to be involved in various physiological domains. The current study used resting state electroencephalography (EEG) to explore differences between people with low mindfulness-high anxiety (LMHA) (n = 29) and high mindfulness-low anxiety (HMLA) (n = 27). The resting EEG was collected for a total of 6 min, with a randomized sequence of eyes closed and eyes opened conditions. Two advanced EEG analysis methods, Holo-Hilbert Spectral Analysis and Holo-Hilbert cross-frequency phase clustering (HHCFPC) were employed to estimate the power-based amplitude modulation of carrier frequencies, and cross-frequency coupling between low and high frequencies, respectively. The presence of higher oscillation power across the delta and theta frequencies in the LMHA group than the HMLA group might have been due to the similarity between the resting state and situations of uncertainty, which reportedly triggers motivational and emotional arousal. Although these two groups were formed based on their trait anxiety and trait mindfulness scores, it was anxiety that was found to be significant predictor of the EEG power, not mindfulness. It led us to conclude that it might be anxiety, not mindfulness, which might have contributed to higher electrophysiological arousal. Additionally, a higher δ-ß and δ-γ CFC in LMHA suggested greater local-global neural integration, consequently a greater functional association between cortex and limbic system than in the HMLA group. The present cross-sectional study may guide future longitudinal studies on anxiety aiming with interventions such as mindfulness to characterize the individuals based on their resting state physiology.


Assuntos
Ansiedade , Eletroencefalografia , Humanos , Transtornos de Ansiedade , Córtex Cerebral/fisiologia , Estudos Transversais , Eletroencefalografia/métodos
7.
Front Psychiatry ; 13: 851908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664468

RESUMO

Study Objectives: The purpose of this study was to determine the effects of daytime transcranial direct current stimulation (tDCS) on sleep electroencephalogram (EEG) in patients with depression. Methods: The study was a double-blinded, randomized, controlled clinical trial. A total of 37 patients diagnosed with a major depression were recruited; 19 patients (13 females and 6 males mean age 44.79 ± 15.25 years) received tDCS active stimulation and 18 patients (9 females and 9 males; mean age 43.61 ± 11.89 years) received sham stimulation. Ten sessions of daytime tDCS were administered with the anode over F3 and the cathode over F4. Each session delivered a 2 mA current for 30 min per 10 working days. Hamilton-24 and Montgomery scales were used to assess the severity of depression, and polysomnography (PSG) was used to assess sleep structure and EEG complexity. Eight intrinsic mode functions (IMFs) were computed from each EEG signal in a channel. The sample entropy of the cumulative sum of the IMFs were computed to acquire high-dimensional multi-scale complexity information of EEG signals. Results: The complexity of Rapid Eye Movement (REM) EEG signals significantly decreased intrinsic multi-scale entropy (iMSE) (1.732 ± 0.057 vs. 1.605 ± 0.046, P = 0.0004 in the case of the C4 channel, IMF 1:4 and scale 7) after tDCS active stimulation. The complexity of the REM EEG signals significantly increased iMSE (1.464 ± 0.101 vs. 1.611 ± 0.085, P = 0.001 for C4 channel, IMF 1:4 and scale 7) after tDCS sham stimulation. There was no significant difference in the Hamilton-24 (P = 0.988), Montgomery scale score (P = 0.726), and sleep structure (N1% P = 0.383; N2% P = 0.716; N3% P = 0.772) between the two groups after treatment. Conclusion: Daytime tDCS changed the complexity of sleep in the REM stage, and presented as decreased intrinsic multi-scale entropy, while no changes in sleep structure occurred. This finding indicated that daytime tDCS may be an effective method to improve sleep quality in depressed patients. Trial registration This trial has been registered at the ClinicalTrials.gov (protocol ID: TCHIRB-10409114, in progress).

8.
Front Aging Neurosci ; 14: 832637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619940

RESUMO

Electroencephalography (EEG) can reveal the abnormalities of dopaminergic subcortico-cortical circuits in patients with Parkinson's disease (PD). However, conventional time-frequency analysis of EEG signals cannot fully reveal the non-linear processes of neural activities and interactions. A novel Holo-Hilbert Spectral Analysis (HHSA) was applied to reveal non-linear features of resting state EEG in 99 PD patients and 59 healthy controls (HCs). PD patients demonstrated a reduction of ß bands in frontal and central regions, and reduction of γ bands in central, parietal, and temporal regions. Compared with early-stage PD patients, late-stage PD patients demonstrated reduction of ß bands in the posterior central region, and increased θ and δ2 bands in the left parietal region. θ and ß bands in all brain regions were positively correlated with Hamilton depression rating scale scores. Machine learning algorithms using three prioritized HHSA features demonstrated "Bag" with the best accuracy of 0.90, followed by "LogitBoost" with an accuracy of 0.89. Our findings strengthen the application of HHSA to reveal high-dimensional frequency features in EEG signals of PD patients. The EEG characteristics extracted by HHSA are important markers for the identification of depression severity and diagnosis of PD.

10.
Hum Brain Mapp ; 43(5): 1535-1547, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873781

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is an alternative treatment for depression, but the neural correlates of the treatment are currently inconclusive, which might be a limit of conventional analytical methods. The present study aimed to investigate the neurophysiological evidence and potential biomarkers for rTMS and intermittent theta burst stimulation (iTBS) treatment. A total of 61 treatment-resistant depression patients were randomly assigned to receive prolonged iTBS (piTBS; N = 19), 10 Hz rTMS (N = 20), or sham stimulation (N = 22). Each participant went through a treatment phase with resting state electroencephalography (EEG) recordings before and after the treatment phase. The aftereffects of stimulation showed that theta-alpha amplitude modulation frequency (fam ) was associated with piTBS_Responder, which involves repetitive bursts delivered in the theta frequency range, whereas alpha carrier frequency (fc ) was related to 10 Hz rTMS, which uses alpha rhythmic stimulation. In addition, theta-alpha amplitude modulation frequency was positively correlated with piTBS antidepressant efficacy, whereas the alpha frequency was not associated with the 10 Hz rTMS clinical outcome. The present study showed that TMS stimulation effects might be lasting, with changes of brain oscillations associated with the delivered frequency. Additionally, theta-alpha amplitude modulation frequency may be as a function of the degree of recovery in TRD with piTBS treatment and also a potential EEG-based predictor of antidepressant efficacy of piTBS in the early treatment stage, that is, first 2 weeks.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Antidepressivos/uso terapêutico , Depressão , Transtorno Depressivo Resistente a Tratamento/terapia , Humanos , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos
11.
Front Neurosci ; 15: 673369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421511

RESUMO

Patterns in external sensory stimuli can rapidly entrain neuronally generated oscillations observed in electrophysiological data. Here, we manipulated the temporal dynamics of visual stimuli with cross-frequency coupling (CFC) characteristics to generate steady-state visual evoked potentials (SSVEPs). Although CFC plays a pivotal role in neural communication, some cases reporting CFC may be false positives due to non-sinusoidal oscillations that can generate artificially inflated coupling values. Additionally, temporal characteristics of dynamic and non-linear neural oscillations cannot be fully derived with conventional Fourier-based analyses mainly due to trade off of temporal resolution for frequency precision. In an attempt to resolve these limitations of linear analytical methods, Holo-Hilbert Spectral Analysis (HHSA) was investigated as a potential approach for examination of non-linear and non-stationary CFC dynamics in this study. Results from both simulation and SSVEPs demonstrated that temporal dynamic and non-linear CFC features can be revealed with HHSA. Specifically, the results of simulation showed that the HHSA is less affected by the non-sinusoidal oscillation and showed possible cross frequency interactions embedded in the simulation without any a priori assumptions. In the SSVEPs, we found that the time-varying cross-frequency interaction and the bidirectional coupling between delta and alpha/beta bands can be observed using HHSA, confirming dynamic physiological signatures of neural entrainment related to cross-frequency coupling. These findings not only validate the efficacy of the HHSA in revealing the natural characteristics of signals, but also shed new light on further applications in analysis of brain electrophysiological data with the aim of understanding the functional roles of neuronal oscillation in various cognitive functions.

12.
J Neurophysiol ; 126(4): 1190-1208, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406888

RESUMO

The nonsinusoidal waveform is emerging as an important feature of neuronal oscillations. However, the role of single-cycle shape dynamics in rapidly unfolding brain activity remains unclear. Here, we develop an analytical framework that isolates oscillatory signals from time series using masked empirical mode decomposition to quantify dynamical changes in the shape of individual cycles (along with amplitude, frequency, and phase) with instantaneous frequency. We show how phase-alignment, a process of projecting cycles into a regularly sampled phase grid space, makes it possible to compare cycles of different durations and shapes. "Normalized shapes" can then be constructed with high temporal detail while accounting for differences in both duration and amplitude. We find that the instantaneous frequency tracks nonsinusoidal shapes in both simulated and real data. Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta oscillations have a stereotyped slow-descending slope in the cycle-wise average yet exhibit high variability on a cycle-by-cycle basis. We show how principal component analysis allows identification of motifs of theta cycle waveform that have distinct associations to cycle amplitude, cycle duration, and animal movement speed. By allowing investigation into oscillation shape at high temporal resolution, this analytical framework will open new lines of inquiry into how neuronal oscillations support moment-by-moment information processing and integration in brain networks.NEW & NOTEWORTHY We propose a novel analysis approach quantifying nonsinusoidal waveform shape. The approach isolates oscillations with empirical mode decomposition before waveform shape is quantified using phase-aligned instantaneous frequency. This characterizes the full shape profile of individual cycles while accounting for between-cycle differences in duration, amplitude, and timing. We validated in simulations before applying to identify a range of data-driven nonsinusoidal shape motifs in hippocampal theta oscillations.


Assuntos
Ondas Encefálicas/fisiologia , Região CA1 Hipocampal/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Animais , Camundongos , Ritmo Teta/fisiologia
13.
Neuroscience ; 460: 69-87, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588001

RESUMO

Visual working memory (VWM) relies on sustained neural activities that code information via various oscillatory frequencies. Previous studies, however, have emphasized time-frequency power changes, while overlooking the possibility that rhythmic amplitude variations can also code frequency-specific VWM information in a completely different dimension. Here, we employed the recently-developed Holo-Hilbert spectral analysis to characterize such nonlinear amplitude modulation(s) (AM) underlying VWM in the frontoparietal systems. We found that the strength of AM in mid-frontal beta and gamma oscillations during late VWM maintenance and VWM retrieval correlated with people's VWM performance. When behavioral performance was altered with transcranial electric stimulation, AM power changes during late VWM maintenance in beta, but not gamma, tracked participants' VWM variations. This beta AM likely codes information by varying its amplitude in theta period for long-range propagation, as our connectivity analysis revealed that interareal theta-beta couplings-bidirectional between mid-frontal and right-parietal during VWM maintenance and unidirectional from right-parietal to left-middle-occipital during late VWM maintenance and retrieval-underpins VWM performance and individual differences.


Assuntos
Memória de Curto Prazo , Percepção Visual , Humanos
14.
Proc Math Phys Eng Sci ; 477(2254): 20210551, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35153589

RESUMO

For epidemics such as COVID-19, with a significant population having asymptomatic, untested infection, model predictions are often not compatible with data reported only for the cases confirmed by laboratory tests. Additionally, most compartmental models have instantaneous recovery from infection, contrary to observation. Tuning such models with observed data to obtain the unknown infection rate is an ill-posed problem. Here, we derive from the first principle an epidemiological model with delay between the newly infected (N) and recovered (R) populations. To overcome the challenge of incompatibility between model and case data, we solve for the ratios of the observed quantities and show that log(N(t)/R(t)) should follow a straight line. This simple prediction tool is accurate in hindcasts verified using data for China and Italy. In traditional epidemiology, an epidemic wanes when much of the population is infected so that 'herd immunity' is achieved. For a highly contagious and deadly disease, herd immunity is not a feasible goal without human intervention or vaccines. Even before the availability of vaccines, the epidemic was suppressed with social measures in China and South Korea with much less than 5% of the population infected. Effects of social behaviour should be and are incorporated in our model.

16.
J Vis ; 19(14): 14, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845974

RESUMO

The response latency of steady-state visually evoked potentials (SSVEPs) is a sensitive measurement for investigating visual functioning of the human brain, specifically in visual development and for clinical evaluation. This latency can be measured from the slope of phase versus frequency of responses by using multiple frequencies of stimuli. In an attempt to provide an alternative measurement of this latency, this study utilized an envelope response of SSVEPs elicited by amplitude-modulated visual stimulation and then compared with the envelope of the generating signal, which was recorded simultaneously with the electroencephalography recordings. The advantage of this measurement is that it successfully estimates the response latency based on the physiological envelope in the entire waveform. Results showed the response latency at the occipital lobe (Oz channel) was approximately 104.55 ms for binocular stimulation, 97.14 ms for the dominant eye, and 104.75 ms for the nondominant eye with no significant difference between these stimulations. Importantly, the response latency at frontal channels (125.84 ms) was significantly longer than that at occipital channels (104.11 ms) during binocular stimulation. Together with strong activation of the source envelope at occipital cortex, these findings support the idea of a feedforward process, with the visual stimuli propagating originally from occipital cortex to anterior cortex. In sum, these findings offer a novel method for future studies in measuring visual response latencies and also potentially shed a new light on understanding of how long collective neural activities take to travel in the human brain.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados Visuais , Estimulação Luminosa/métodos , Tempo de Reação , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Lobo Occipital/fisiologia , Processamento de Sinais Assistido por Computador , Visão Ocular , Adulto Jovem
17.
Sci Rep ; 9(1): 16919, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729410

RESUMO

Natural sensory signals have nonlinear structures dynamically composed of the carrier frequencies and the variation of the amplitude (i.e., envelope). How the human brain processes the envelope information is still poorly understood, largely due to the conventional analysis failing to quantify it directly. Here, we used a recently developed method, Holo-Hilbert spectral analysis, and steady-state visually evoked potential collected using electroencephalography (EEG) recordings to investigate how the human visual system processes the envelope of amplitude-modulated signals, in this case with a 14 Hz carrier and a 2 Hz envelope. The EEG results demonstrated that in addition to the fundamental stimulus frequencies, 4 Hz amplitude modulation residing in 14 Hz carrier and a broad range of carrier frequencies covering from 8 to 32 Hz modulated by 2 Hz amplitude modulation are also found in the two-dimensional frequency spectrum, which have not yet been recognized before. The envelope of the stimulus is also found to dominantly modulate the response to the incoming signal. The findings thus reveal that the electrophysiological response to amplitude-modulated stimuli is more complex than could be revealed by, for example, Fourier analysis. This highlights the dynamics of neural processes in the visual system.


Assuntos
Eletroencefalografia , Fenômenos Eletrofisiológicos , Córtex Visual/fisiologia , Adulto , Análise de Dados , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Estimulação Luminosa , Vias Visuais , Adulto Jovem
18.
Data Brief ; 23: 103727, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372394

RESUMO

Data presented are related to the research article entitled "Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity" (J. Deng et al., 2018). The datasets in Deng et al. (2018) are analyzed on the foundation of ensemble empirical mode decomposition (EEMD) (Z.H. Wu and N.E. Huang, 2009), and reveal more occurrences of Dansgaard-Oeschger (DO) events in the decreasing phase of obliquity. Here, we report the number of significant high Shannon entropy (SE) (C.E. Shannon and W. Weaver, 1949) of 95% significance level of DO events in the increasing and decreasing phases of obliquity, respectively. First, the proxy time series are filtered by EEMD to obtain DO events. Then, the time-varying SE of DO modes are calculated on the basis of principle of histogram. The 95% significance level is evaluated through surrogate data (T. Schreiber and A. Schmitz, 1996). Finally, a comparison between the numbers of SE values that are larger than 95% significance level in the increasing and decreasing phases of obliquity, respectively, is reported.

19.
Nat Commun ; 9(1): 3378, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140008

RESUMO

Inference of causality in time series has been principally based on the prediction paradigm. Nonetheless, the predictive causality approach may underestimate the simultaneous and reciprocal nature of causal interactions observed in real-world phenomena. Here, we present a causal-decomposition approach that is not based on prediction, but based on the covariation of cause and effect: cause is that which put, the effect follows; and removed, the effect is removed. Using empirical mode decomposition, we show that causal interaction is encoded in instantaneous phase dependency at a specific time scale, and this phase dependency is diminished when the causal-related intrinsic component is removed from the effect. Furthermore, we demonstrate the generic applicability of our method to both stochastic and deterministic systems, and show the consistency of causal-decomposition method compared to existing methods, and finally uncover the key mode of causal interactions in both modelled and actual predator-prey systems.


Assuntos
Causalidade , Modelos Biológicos , Algoritmos , Estudos de Viabilidade , Fatores de Tempo
20.
Neurobiol Aging ; 70: 59-69, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007165

RESUMO

The intrinsic composition and functional relevance of resting-state blood oxygen level-dependent signals are fundamental in research using functional magnetic resonance imaging (fMRI). Using the Hilbert-Huang Transform to estimate high-resolution time-frequency spectra, we investigated the instantaneous frequency and amplitude modulation of resting-state fMRI signals, as well as their functional relevance in a large normal-aging cohort (n = 420, age = 21-89 years). We evaluated the cognitive function of each participant and recorded respiratory signals during fMRI scans. The results showed that the Hilbert-Huang Transform effectively categorized resting-state fMRI power spectra into high (0.087-0.2 Hz), low (0.045-0.087 Hz), and very-low (≤0.045 Hz) frequency bands. The high-frequency power was associated with respiratory activity, and the low-frequency power was associated with cognitive function. Furthermore, within the cognition-related low-frequency band (0.045-0.087 Hz), we discovered that aging was associated with the increased frequency modulation and reduced amplitude modulation of the resting-state fMRI signal. These aging-related changes in frequency and amplitude modulation of resting-state fMRI signals were unaccounted for by the loss of gray matter volume and were consistently identified in the default mode and salience network. These findings indicate that resting-state fMRI signal modulations are dynamic during the normal aging process. In summary, our results refined the functionally related blood oxygen level-dependent frequency band in a considerably narrow band at a low-frequency range (0.045-0.087 Hz) and challenged the current method of resting-fMRI preprocessing by using low-frequency filters with a relatively wide range below 0.1 Hz.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Ondas Encefálicas , Encéfalo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Testes Neuropsicológicos , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...