Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 108: 104448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614218

RESUMO

UV irradiation significantly alters nanoplastics (NPs) physicochemical properties, thus affecting their biological toxicity. This study is the first to assess the influence of virgin and UV-aged polystyrene NPs (v-PS NPs, a-PS NPs) on the intestinal barrier of ICR mice. We found that a-PS NPs can cause more severe intestinal barrier damage compared with v-PS NPs. The reason may be attributed to that a-PS NPs produced more ROS in intestinal tissue. Moreover, the strong oxidizing property of hydroxyl radicals (·OH) generated from the a-PS NPs can damage cell membranes through lipid peroxidation, thereby leading to a low clearance rate of ·OH due to the impaired intestinal tissue function, in turn, causing more ROS to accumulate and inducing severe oxidative damage. This research underscores the crucial role of ·OH in mediating oxidative damage from UV-aged nanoparticles, emphasizing the need to consider environmental factors in assessing NPs toxicity.


Assuntos
Mucosa Intestinal , Camundongos Endogâmicos ICR , Nanopartículas , Poliestirenos , Espécies Reativas de Oxigênio , Raios Ultravioleta , Animais , Poliestirenos/toxicidade , Raios Ultravioleta/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Nanopartículas/toxicidade , Masculino , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Radical Hidroxila/metabolismo , Camundongos , Microplásticos/toxicidade
2.
J Environ Sci (China) ; 142: 259-268, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527891

RESUMO

The environmental behavior of and risks associated with nanoplastics (NPs) have attracted considerable attention. However, compared to pristine NPs, environmental factors such as ultraviolet (UV) irradiation that lead to changes in the toxicity of NPs have rarely been studied. We evaluated the changes in morphology and physicochemical properties of polystyrene (PS) NPs before and after UV irradiation, and compared their hepatotoxicity in mice. The results showed that UV irradiation caused particle size reduction and increased the carbonyl index (CI) and negative charge on the particle surface. UV-aged PS NPs (aPS NPs) could induce the generation of hydroxyl radicals (·OH), but also further promoted the generation of ·OH in the Fenton reaction system. Hepatic pathological damage was more severe in mice exposed to aPS NPs, accompanied by a large number of vacuoles and hepatocyte balloon-like changes and more marked perturbations in blood glucose and serum lipoprotein, alanine aminotransferase and aspartate aminotransferase levels. In addition, exposure to PS NPs and aPS NPs, especially aPS NPs, triggered oxidative stress and significantly damaged the antioxidant capacity of mice liver. Compared with PS NPs, exposure to aPS NPs increased the number of altered metabolites in hepatic and corresponding metabolic pathways, especially glutathione metabolism. Our research suggests that UV irradiation can disrupt the redox balance in organisms by promoting the production of ·OH, enhancing PS NPs-induced liver damage and metabolic disorders. This study will help us understand the health risks of NPs and to avoid underestimation of the risks of NPs in nature.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Camundongos , Radical Hidroxila , Microplásticos/toxicidade , Poliestirenos/toxicidade , Raios Ultravioleta , Fígado , Nanopartículas/toxicidade
3.
Small ; 20(23): e2309369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175859

RESUMO

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Assuntos
Ferroptose , Rim , Poliestirenos , Transferrina , Raios Ultravioleta , Poliestirenos/química , Ferroptose/efeitos dos fármacos , Animais , Rim/patologia , Rim/efeitos dos fármacos , Humanos , Transferrina/metabolismo , Camundongos , Adsorção , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade
4.
Ecotoxicol Environ Saf ; 262: 115341, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37573648

RESUMO

Platelet-derived extracellular vesicles (P-EVs), as the most abundant vesicles in blood, have been proven to play cardinal roles in cardiovascular injury. RNAs (especially miRNAs) carried by P-EVs can be transferred to the receptor, which plays a critical role in regulating vascular endothelial function. PM2.5 is one of the most well-known risk factors that cause cardiovascular disease. Therefore, the objective of the current study was to explore whether exposure to PM2.5 would alter the gene expression profile of P-EVs, and to further elucidate the role of RNAs (especially miRNAs) carried by P-EVs in cardiovascular injury induced by PM2.5 exposure. P-EVs were isolated from the platelet-rich plasma which was exposed and unexposed to PM2.5, and the differentially expressed target genes were evaluated using whole-transcriptome gene sequencing. Rats were treated with P-EVs under different exposure conditions (a protein concentration of 50 µg/mL) and an equal volume of normal saline. The pathological damage of the thoracic aorta and cardiac tissue was evaluated and the coagulation function of the rats was detected. The differentially expressed genes were shown to be mainly concentrated in inflammation, angiogenesis, and apoptosis-related pathways. Moreover, P-EVs extracted from PM2.5-exposed plasma had the potential to trigger an inflammatory response, impair vascular endothelial function, disrupt the normal coagulation process, and promote a prothrombotic state. Our study indicated that PM2.5 induces cardiovascular injury in rats by interfering with the gene expression of P-EVs. It will provide new targets for studying the mechanism involved in PM2.5-induced cardiovascular injury.

5.
Ecotoxicol Environ Saf ; 256: 114906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062265

RESUMO

With the detection of nano-plastics (NPs) in daily essentials and drinking water, the potential harm of NPs to human health has become the focus of global attention. Studies have shown that long term exposure to NPs can lead to disorders of glucose and lipid metabolism in organisms, while the effects of short term exposure are rarely reported. Moreover, environmental factors cause the aging of NPs, and it is unclear whether this has an effect on their toxicity. In this study, we use 100 nm polystyrene (PS) NPs and ultraviolet (UV) aging PS (aPS) NPs to gavage mice for 7 days at an exposure dose of 50 mg/kg/day. To evaluate the effects of exposure on mice hepatic glucose lipid metabolism, we performed blood biochemical, pathological and metabolomic analyses. The results showed that exposure to PS NPs and aPS NPs increased serum glucose, disrupted serum lipoprotein levels, and up-regulated the expression levels of phosphatidylinositol 3-kinase (PI3K)/ phosphoprotein kinase B (p-AKT)/Glucose transporter 4 (GLUT4) proteins in the glucose metabolism pathway. The expression levels of key proteins sterol regulatory element binding protein-1 (SREBP-1)/peroxisome proliferator-activated receptor-γ (PPARγ)/adipose triglyceride lipase (ATGL) in the lipid metabolism signaling pathway were significantly increased. These findings suggest that short term exposure to PS NPs and aPS NPs induces glycolipid metabolism disturbance in mice, which may subsequently awaken the mice to self-regulate the serum levels of various lipoproteins and the expression of related key proteins. Compared with PS NPs, the aPS NPs interfered more strongly with glucose metabolism, and the corresponding self-regulation in mice was also more obvious. These findings not only provide a basis for environmental factors to increase the health risk of NPs but also provided a reference for the selection of test substances for further studies on the toxicity of NPs.


Assuntos
Poluentes Ambientais , Glicolipídeos , Metabolismo dos Lipídeos , Microplásticos , Animais , Humanos , Camundongos , Glucose , Microplásticos/metabolismo , Microplásticos/toxicidade , Nanopartículas/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Autocontrole , Poluentes Ambientais/toxicidade
6.
Part Fibre Toxicol ; 19(1): 17, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260173

RESUMO

BACKGROUND: Quantum dots (QDs) have gained increased attention for their extensive biomedical and electronic products applications. Due to the high priority of QDs in contacting the circulatory system, understanding the hemocompatibility of QDs is one of the most important aspects for their biosafety evaluation. Thus far, the effect of QDs on coagulation balance haven't been fully understood, and limited studies also have yet elucidated the potential mechanism from the perspective of interaction of QDs with coagulation-related proteins. RESULTS: QDs induced the derangement of coagulation balance by prolonging the activated partial thromboplastin time and prothrombin time as well as changing the expression levels of coagulation and fibrinolytic factors. The contact of QDs with PTM (prothrombin), PLG (plasminogen) and FIB (fibrinogen) which are primary coagulation-related proteins in the coagulation and fibrinolysis systems formed QDs-protein conjugates through hydrogen-bonding and hydrophobic interaction. The affinity of proteins with QDs followed the order of PTM > PLG > FIB, and was larger with CdTe/ZnS QDs than CdTe QDs. Binding with QDs not only induced static fluorescence quenching of PTM, PLG and FIB, but also altered their conformational structures. The binding of QDs to the active sites of PTM, PLG and FIB may promote the activation of proteins, thus interfering the hemostasis and fibrinolysis processes. CONCLUSIONS: The interactions of QDs with PTM, PLG and FIB may be key contributors for interference of coagulation balance, that is helpful to achieve a reliable and comprehensive evaluation on the potential biological influence of QDs from the molecular level.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Pontos Quânticos/metabolismo , Espectrometria de Fluorescência , Telúrio/química , Telúrio/metabolismo
7.
Mol Med Rep ; 24(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080648

RESUMO

Perioperative neurocognitive dysfunction (PND) is a prevalent neurological complication after anesthesia and surgery. Ginkgolide B (GB) has been suggested to improve lipopolysaccharide­induced learning and memory impairment. The present study aimed to investigate whether GB serves a protective role against PND by inhibiting inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Abdominal surgery was performed on 10­ to 12­week­old male C57BL/6 mice under isoflurane anesthesia. Prior to surgery, 1400W (a specific iNOS inhibitor) and GB were administered via intraperitoneal injection. Open field and fear conditioning tests were conducted to assess cognitive function on postoperative days 1 and 3. Biochemical assays were performed to evaluate alterations in NO, malondialdehyde (MDA) and superoxide dismutase (SOD) levels. Western blotting was performed to measure iNOS expression in the hippocampus on postoperative day 1. In addition, hematoxylin and eosin staining was performed to detect the neuronal morphology in the hippocampus. Following treatment with 1400W or GB, surgery­induced cognitive dysfunction was improved. Compared with the control group, the surgery group exhibited significant overproduction of iNOS and MDA in the hippocampus on postoperative day 1. Higher levels of NO were also detected in the hippocampus and prefrontal cortex of the surgery group on postoperative day 1. Furthermore, pretreatment with 1400W or GB significantly inhibited the surgery­induced elevation of NO and MDA in brain tissues. Moreover, GB pretreatment significantly inhibited surgery­induced downregulation of SOD and upregulation of iNOS. Surgery­induced increases in neuronal loss and the Bax/Bcl­2 ratio in the hippocampus were significantly inhibited by pretreatment with GB. Collectively, the results of the present study demonstrated that the therapeutic effects of GB on PND were associated with inhibition of iNOS­induced NO production, increased SOD, and the alleviation of neuronal loss and apoptosis.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Transtornos Neurocognitivos/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Terapêutica/métodos , Animais , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/patologia , Óxido Nítrico Sintase Tipo II/genética , Superóxido Dismutase/metabolismo , Regulação para Cima
8.
RSC Adv ; 11(21): 12902-12906, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423824

RESUMO

To accurately understand the biological pollution level and toxicity of polydisperse nanoplastics, an effective solution is presented to separate polydisperse nanoplastics and detect their size, mass and number concentration in a biological matrix by asymmetrical flow field fractionation coupled with a diode array detector and a multiangle light scattering detector.

9.
Ecotoxicol Environ Saf ; 198: 110652, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380305

RESUMO

At present, PM2.5 exposure has been considered as a major risk factor for cardiovascular disease. Most studies have focused on the toxic mechanism of PM2.5 in direct contact with cells or biomolecules, only few studies have reported the toxic mechanism of PM2.5 mediated by intercellular communication. Extracellular vesicles are the main carriers of intercellular communication and signal transduction in vivo, and play a vital role in the occurrence and development of cardiovascular disease. Therefore, the present research aimed to determine whether platelets-derived extracellular vesicles (P-EVs) secreted from PM2.5-exposed platelets are transferred into the human umbilical vein endothelial cells (HUVECs) and mediated the PM2.5-induced vascular endothelial injury by affecting normal cellular function. The result showed that P-EVs secreted from PM2.5-exposed platelets significantly reduced the proliferation promoting effect of normal P-EVs on vascular endothelium by decreasing the effective factors promoting vascular endothelial growth. Meanwhile, the levels of intercellular adhesion molecules, proinflammatory factors (ICAM-1, IL-6, and TNF-α) and the ROS level of HUVECs were markedly elevated. In addition, the apoptotic rate was increased via up-regulating the protein level of cytochrome-C(Cyt C), Bax, cleaved caspase-3 and down-regulating Bcl-2 in HUVECs, indicating that mitochondrial apoptotic pathway was activated by P-EVs secreted from PM2.5-exposed platelets. Further, the expression level of P-EVs targeted miRNAs in HUVECs was altered, indicating that miRNAs released from P-EVs were transferred to HUVECs and regulated the cellular function, while PM2.5 could inhibit this regulatory effect. In summary, these results demonstrate that the P-EVs secreted from PM2.5-exposed platelets can enter the HUVECs, which mediate the PM2.5-induced vascular endothelial injury. These findings provide a new perspective and theoretical basis for further exploring the mechanism of cardiovascular damage caused by PM2.5 exposure.


Assuntos
Plaquetas/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Material Particulado/toxicidade , Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Transdução de Sinais , Regulação para Cima
10.
Colloids Surf B Biointerfaces ; 189: 110881, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32105962

RESUMO

Environmental particulate matter, especially ultrafine particles (< 100 nm in diameter), can damage the endothelium and favor cardiovascular disease in the general population. With the wide application of nanomaterials, exposure to nanoscale particles (nanoparticles) in the environment is increasing. Systematic study of the interaction of nanoparticles with plasma proteins is critically important for understanding the cardiovascular toxicity of nanomaterials. We combined kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) and conformational data from fluorescence spectroscopy and circular dichroism (CD) to explore the binding mechanism between cadmium telluride quantum dots (CdTe QDs) and plasma proteins. Special attention was paid to the interaction between CdTe QDs and coagulation-related proteins and the effects of CdTe QDs on protein conformation. The results showed that the binding affinities of CdTe QDs and plasma proteins depend on the nature of the protein and follow the order of fibrinogen (FIB)> plasminogen (PLG) > thrombin (TM) > metallothionein-II (MT-II) > human serum albumin (HSA). The interaction was primarily attributed to hydrophobic forces and the spontaneity of the occurrence of the interaction, and the protein secondary structures of FIB and PLG were changed significantly. The information gained in this study might shed light on the potential toxicity of QDs to the cardiovascular system.


Assuntos
Proteínas Sanguíneas/química , Compostos de Cádmio/química , Pontos Quânticos/química , Telúrio/química , Termodinâmica , Humanos , Cinética , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Nanotheranostics ; 2(3): 271-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977739

RESUMO

Objective: Quantum dots (QDs) has widely applied in the field of science, whose potential toxic effect has increasingly become a focus concern we need pay attention to in public health. The purpose of this article was to explore the toxicity mechanism with oxidative damage from treatment with QDs at the molecular level through a gene microarray. Methods: Mice were administered aqueously synthesized cadmium telluride QDs (CdTe aqQDs) via intravenous tail injection of a 2 µmol/kg solution (based on the molar mass of Cd), and their kidneys were collected at 1 day in strict accordance with the programs used for treated mice. We determined the hierarchical clustering of expression ratios, enriched gene ontology (GO) terms and signaling pathways through gene microarray analysis and bioinformatics analysis in kidney tissue and screened the key enzyme genes, which were verified by real-time quantitative polymerase chain reaction (real-time qPCR). Results: Compared to control group, 459 lncRNAs (197 down-regulated and 262 up-regulated) and 256 mRNAs (103 down-regulated and 153 up-regulated) were differentially expressed. According to biological processes in enriched GO terms, the response to a redox state played a significant role in the biological processes involved altered genes. Pathway analysis showed that the signaling pathways that involved cytochrome P450 (CYP450) enzymes had a close relationship with QDs. Among these signaling pathways, gene expression profiling revealed that selected differentially expressed mRNAs (CYP19A1, CYP1B1, CYP11A1, CYP11B2, and CYP17A1 in the kidney and CYP19A1 and CYP1B1 in the liver) were validated by real-time qPCR, resulting in expression levels of CYP11A1, CYP11B2 and CYP17A1 in the kidney and CYP19A1 and CYP1B1 in the liver that were significantly increased, however in expression levels of CYP19A1 and CYP1B1 compared with control group in the kidney, there was no significant difference. Conclusions: Our results provide a foundation for and potential insight into the role of CYP450-related genes in QD-induced oxidative stress. QDs may produce a great deal of reactive oxygen species (ROS) by promoting high expression of CYP450 enzymes and accumulating steroid hormones, which may be an important toxicity mechanism for mediating oxidative stress and tissue damage.

12.
Chem Commun (Camb) ; 54(42): 5342-5345, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29740645

RESUMO

In view of the significance and urgency of the speciation analysis of quantum dots (QDs) and their degradation products for clarifying their degradation rules and toxicity mechanisms, a method for the identification and quantification of CdTe QDs and corresponding ionic species in complex matrices was developed using capillary zone electrophoresis (CZE) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). The quality assessment of commercial CdTe QDs and serum pharmacokinetics of synthesized CdTe QDs in rats were successfully undertaken using the developed CZE-ICP-MS method.

13.
Chem Commun (Camb) ; 54(20): 2542-2545, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464260

RESUMO

A facile and sensitive method with a tunable dynamic range has been proposed for the detection of Cu2+ based on the self-cleavage of Cu2+-specific DNAzyme and the Cu2+-based inhibition of HRP activity, and this method was applied to evaluate the copper species in healthy people and WD patients.

14.
Int J Nanomedicine ; 12: 6425-6435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919745

RESUMO

Although quantum dot (QD)-induced toxicity occurs due to free radicals, generation of oxidative stress mediated by reactive oxygen species (ROS) formation is considered an important mechanism. However, free radical mechanisms are essentially difficult to elucidate at the molecular level because most biologically relevant free radicals are highly reactive and short-lived, making them difficult to directly detect, especially in vivo. Antioxidants play an important role in preventing or, in most cases, limiting the damage caused by ROS. Healthy people and animals possess many endogenous antioxidative substances that scavenge free radicals in vivo to maintain the redox balance and genome integrity. The antioxidant capacity of an organism is highly important but seldom studied. In this study, the dose and time effects of CdTe QDs on the antioxidant capacities of the liver and kidneys were investigated in mice using the electron paramagnetic resonance (EPR) spin-trapping technique. We found that the liver and kidneys of healthy mice contain specific antioxidant capacities that scavenge ·OH and ·O2-. Furthermore, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione [GSH] and malondialdehyde [MDA]) were examined. In dose course studies, the free radical scavenging efficiencies of the liver and kidneys were found to gradually decrease with increasing concentration of CdTe QD exposure. The activities and levels of SOD, CAT, GPx and MDA were observed to increase in treated groups, whereas those of GSH were reduced. The time course studies revealed that the QD-induced antioxidant efficiency reduction was time dependent with GSH decrease and could recover after a period of time. These experimental results offer new information on QD toxicity in vivo. Specifically, CdTe QDs can deplete GSH to reduce the elimination ability of the liver and kidneys for ·OH and ·O2-, thus inducing oxidative damage to tissues.


Assuntos
Antioxidantes/metabolismo , Compostos de Cádmio/administração & dosagem , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pontos Quânticos/administração & dosagem , Telúrio/administração & dosagem , Animais , Compostos de Cádmio/farmacologia , Catalase/metabolismo , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos/química , Superóxido Dismutase/metabolismo , Telúrio/farmacologia
15.
Int J Nanomedicine ; 11: 2319-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27307732

RESUMO

A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd(2+)) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd(2+) from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd(2+) and ·OH, and could recover after a period of time. The Cd(2+) and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs.


Assuntos
Compostos de Cádmio/toxicidade , Cádmio/análise , Radical Hidroxila/análise , Rim/patologia , Fígado/patologia , Pontos Quânticos/toxicidade , Telúrio/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Imuno-Histoquímica , Íons , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Metalotioneína/metabolismo , Camundongos Endogâmicos ICR , Pontos Quânticos/química , Pontos Quânticos/ultraestrutura , Fatores de Tempo
16.
J Trace Elem Med Biol ; 30: 37-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25744508

RESUMO

A rapid and sensitive immunoassays of mercury (Hg) in biological samples was developed using quantum dots (QDs) and magnetic beads (MBs) as fluorescent and separated probes, respectively. A monoclonal antibody (mAb) that recognizes an Hg detection antigen (BSA-DTPA-Hg) complex was produced by the injection of BALB/c mice with an Hg immunizing antigen (KLH-DTPA-Hg). Then the ascites monoclonal antibodies were purified. The Hg monoclonal antibody (Hg-mAb) is conjugated with MBs to separate Hg from biological samples, and the other antibody, which is associated with QDs, is used to detect the fluorescence. The Hg in biological samples can be quantified using the relationship between the QDs fluorescence intensity and the concentration of Hg in biological samples following magnetic separation. In this method, the detection linear range is 1-1000ng/mL, and the minimum detection limit is 1ng/mL. The standard addition recovery rate was 94.70-101.18%. The relative standard deviation values were 2.76-7.56%. Furthermore, the Hg concentration can be detected in less than 30min, the significant interference of other heavy metals can be avoided, and the simultaneous testing of 96 samples can be performed. These results indicate that the method could be used for rapid monitoring Hg in the body.


Assuntos
Imunoensaio/métodos , Fenômenos Magnéticos , Mercúrio/urina , Pontos Quânticos/metabolismo , Coloração e Rotulagem , Animais , Anticorpos Monoclonais/metabolismo , Bovinos , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Feminino , Hibridomas , Camundongos Endogâmicos BALB C , Ácido Pentético/análogos & derivados , Ácido Pentético/metabolismo , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
17.
Part Fibre Toxicol ; 11: 50, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266717

RESUMO

BACKGROUND: Given that the effects of ultrafine fractions (<0.1 µm) on ischemic heart diseases (IHD) and other cardiovascular diseases are gaining attention, this study is aimed to explore the influence of silica nanoparticles (SiNPs)-induced autophagy on endothelial cell homeostasis and angiogenesis. METHODS AND RESULTS: Ultrastructural changes of autophagy were observed in both vascular endothelial cells and pericytes in the heart of ICR mice by TEM. Autophagic activity and impaired angiogenesis were further confirmed by the immunohistochemistry staining of LC3 and VEGFR2. In addition, the immunohistochemistry results showed that SiNPs had an inhibitory effect on ICAM-1 and VCAM-1, but no obvious effect on E-selectin in vivo. The disruption of F-actin cytoskeleton occurred as an initial event in SiNPs-treated endothelial cells. The depolarized mitochondria, autophagic vacuole accumulation, LC3-I/LC3-II conversion, and the down-regulation of cellular adhesion molecule expression were all involved in the disruption of endothelial cell homeostasis in vitro. Western blot analysis indicated that the VEGFR2/PI3K/Akt/mTOR and VEGFR2/MAPK/Erk1/2/mTOR signaling pathway was involved in the cardiovascular toxicity triggered by SiNPs. Moreover, there was a crosstalk between the VEGFR2-mediated autophagy signaling and angiogenesis signaling pathways. CONCLUSIONS: In summary, the results demonstrate that SiNPs induce autophagic activity in endothelial cells and pericytes, subsequently disturb the endothelial cell homeostasis and impair angiogenesis. The VEGFR2-mediated autophagy pathway may play a critical role in maintaining endothelium and vascular homeostasis. Our findings may provide experimental evidence and explanation for cardiovascular diseases triggered by nano-sized particles.


Assuntos
Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Dióxido de Silício/toxicidade , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/ultraestrutura , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Homeostase , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Masculino , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Tamanho da Partícula , Pericitos/metabolismo , Pericitos/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
18.
Int J Nanomedicine ; 8: 3533-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24092974

RESUMO

Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells.


Assuntos
Ciclo Celular/fisiologia , Hepatócitos/patologia , Hepatócitos/fisiologia , Nanopartículas Metálicas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Prata/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Tamanho da Partícula
19.
PLoS One ; 8(9): e74606, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058598

RESUMO

Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4-96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.


Assuntos
Embrião não Mamífero/patologia , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Peixe-Zebra/embriologia , Animais , Comportamento Animal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Escuridão , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Hidrodinâmica , Larva/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Coloração e Rotulagem , Eletricidade Estática
20.
Part Fibre Toxicol ; 10: 37, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23915017

RESUMO

BACKGROUND: Quantum dots (QDs) have been used as novel fluorescent nanoprobes for various bioapplications. The degradation of QDs, and consequent release of free cadmium ions, have been suggested to be the causes of their overall toxicity. However, in contrast to sufficient investigations regarding the biological fate of QDs, a paucity of studies have reported their chemical fate in vivo. Therefore, the overall aim of our study was to understand the chemical fate of QDs in vivo and explore analytical techniques or methods that could be used to define the chemical fate of QDs in vivo. METHODS: Male ICR mice were administered a single intravenous dose (0.2 µmol/kg) of aqueous synthesized CdTe/ZnS aqQDs. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to simultaneously measure the concentrations of cadmium (Cd) and tellurium (Te) in the blood and tissues over the course of a 28 day period. We compared the blood kinetic parameters and biodistributions of Cd and Te, and used the molar ratio of Cd:Te as a marker for QDs degradation. RESULTS: Cd and Te display different blood kinetics and biodistribution profiles. The Cd:Te ratio in the blood did not vary significantly within the first hour compared with intact CdTe/ZnS aqQDs. The Cd:Te ratio decreased gradually over time from the 6 h time point on. Cd accumulated in the liver, kidneys, and spleen. Te was distributed primarily to the kidneys. Sharp time-dependent increases in the Cd:Te ratio were found in liver tissues. CONCLUSIONS: QDs can undergo degradation in vivo. In vitro, QDs are chemically stable and do not elicit the same biological responses or consequences as they do in vivo. Our methods might provide valuable information regarding the degradation of QDs in vivo and may enable the design and development of QDs for biological and biomedical applications.


Assuntos
Compostos de Cádmio/sangue , Compostos de Cádmio/farmacocinética , Pontos Quânticos , Sulfetos/sangue , Sulfetos/farmacocinética , Telúrio/sangue , Telúrio/farmacocinética , Compostos de Zinco/sangue , Compostos de Zinco/farmacocinética , Animais , Compostos de Cádmio/administração & dosagem , Injeções Intravenosas , Rim/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos Endogâmicos ICR , Baço/metabolismo , Sulfetos/administração & dosagem , Telúrio/administração & dosagem , Distribuição Tecidual , Compostos de Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...