Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8319, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097549

RESUMO

Mineralization is a long-lasting method commonly used by biological materials to selectively strengthen in response to site specific mechanical stress. Achieving a similar form of toughening in synthetic polymer composites remains challenging. In previous work, we developed methods to promote chemical reactions via the piezoelectrochemical effect with mechanical responses of inorganic, ZnO nanoparticles. Herein, we report a distinct example of a mechanically-mediated reaction in which the spherical ZnO nanoparticles react themselves leading to the formation of microrods composed of a Zn/S mineral inside an organogel. The microrods can be used to selectively create mineral deposits within the material resulting in the strengthening of the overall resulting composite.

2.
ACS Macro Lett ; 12(10): 1286-1292, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37695322

RESUMO

The synthesis of well-defined cyclic polymers is crucial to exploring applications spanning engineering, energy, and biomedicine. These materials lack chain-ends and are therefore imbued with unique bulk properties. Despite recent advancements, the general methodology for controlled cyclic polymer synthesis via ring-expansion metathesis polymerization (REMP) remains challenging. Low initiator activity leads to high molar mass polymers at short reaction times that subsequently "evolve" to smaller polymeric products. In this work, we demonstrate that in situ addition of pyridine to the tethered ruthenium-benzylidene REMP initiator CB6 increases ancillary ligand lability to synthesize controlled and low dispersity cyclic poly(norbornene) on a short time scale without relying on molar mass evolution events.

3.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203481

RESUMO

In this study, by combining a large-area MoS2 monolayer with silver plasmonic nanostructures in a deformable polydimethylsiloxane substrate, we theoretically and experimentally studied the photoluminescence (PL) enhancement of MoS2 by surface lattice resonance (SLR) modes of different silver plasmonic nanostructures. We also observed the stable PL enhancement of MoS2 by silver nanodisc arrays under differently applied stretching strains, caused by the mechanical holding effect of the MoS2 monolayer. We believe the results presented herein can guarantee the possibility of stably enhancing the light emission of transition metal dichalcogenides using SLR modes in a deformable platform.

4.
J Am Chem Soc ; 143(19): 7314-7319, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33960766

RESUMO

Ring-expansion metathesis polymerization (REMP) has shown potential as an efficient strategy to access cyclic macromolecules. Current approaches that utilize cyclic olefin feedstocks suffer from poor functional group tolerance, low initiator stability, and slow reaction kinetics. Improvements to current initiators will address these issues in order to develop more versatile and user-friendly technologies. Herein, we report a reinvigorated tethered ruthenium-benzylidene initiator, CB6, that utilizes design features from ubiquitous Grubbs-type initiators that are regularly applied in linear polymerizations. We report the controlled synthesis of functionalized cyclic poly(norbornene)s and demonstrate that judicious ligand modifications not only greatly improve kinetics but also lead to enhanced initiator stability. Overall, CB6 is an adaptable platform for the study and application of cyclic macromolecules via REMP.

5.
Nanoscale Res Lett ; 8(1): 439, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24148255

RESUMO

A Si quantum dot (QD)-embedded ZnO thin film is successfully fabricated on a p-type Si substrate using a ZnO/Si multilayer structure. Its optical transmittance is largely improved when increasing the annealing temperature, owing to the phase transformation from amorphous to nanocrystalline Si QDs embedded in the ZnO matrix. The sample annealed at 700°C exhibits not only high optical transmittance in the long-wavelength range but also better electrical properties including low resistivity, small turn-on voltage, and high rectification ratio. By using ZnO as the QDs' matrix, the carrier transport is dominated by the multistep tunneling mechanism, the same as in a n-ZnO/p-Si heterojunction diode, which clearly differs from that using the traditional matrix materials. Hence, the carriers transport mainly in the ZnO matrix, not through the Si QDs. The unusual transport mechanism using ZnO as matrix promises the great potential for optoelectronic devices integrating Si QDs.

6.
Nanotechnology ; 24(19): 195701, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23579196

RESUMO

A gradient Si-rich oxide multilayer (GSRO-ML) deposition structure is proposed to achieve super-high density Si quantum dot (QD) thin film formation while preserving QD size controllability for better photovoltaic properties. Our results indicate that the Si QD thin film using a GSRO-ML structure can efficiently increase the QD density and control the QD size. Its optical properties clearly promise the capability of effective bandgap engineering even though these QDs are closely formed. The Si QD thin film using a GSRO-ML structure obviously reveals better electro-optical properties than those using a [silicon dioxide/silicon-rich oxide] multilayer ([SiO2/SRO]-ML) structure owing to the better optical absorption and carrier transport properties. Therefore, we successfully demonstrate that our proposed GSRO-ML structure has great potential for application in solar cells integrating Si QD thin films.

7.
Opt Express ; 20(10): 10470-5, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565671

RESUMO

In this study, we fabricate ZnO thin films with nano-crystalline Si (nc-Si) quantum dots (QDs) using a ZnO/Si multilayer deposition structure and a post-annealing process, and the formation of high crystallinity of Si QDs embedded in the crystalline ZnO matrix is demonstrated. For optical properties, the essential features of ZnO material, high transmission in long-wavelength and high absorption in short-wavelength ranges, are preserved. We observe significantly enhanced light absorption and an unusual photoluminescence emission peak contributed from the nc-Si QDs in the middle-wavelength range. In addition, we confirm the formation of optical sub-bandgap and the obtained value is quite close to the unusual PL emission peak. We show that meaningful sub-bandgap can form in ZnO thin film by embedding nc-Si QDs while maintaining the advantageous properties of ZnO matrix. This newly developed composite material, nc-Si QD embedded ZnO thin films, can be useful for various electro-optical applications.


Assuntos
Nanotecnologia/métodos , Pontos Quânticos , Silício/química , Óxido de Zinco/química , Absorção , Cristalização , Eletroquímica/métodos , Teste de Materiais , Membranas Artificiais , Microscopia de Força Atômica/métodos , Óptica e Fotônica/métodos , Espectrofotometria/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...