Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(10): 2604-2609, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471329

RESUMO

Diffraction gratings with high upward diffraction efficiency and large effective length are required for chip-scale light detection and ranging. We propose a diffraction grating based on a multilayer silicon nitride waveguide, which theoretically achieves an upward diffraction efficiency of 92%, a near-field effective length of 376 µm, and a far-field divergence angle of 0.105° at a wavelength of 850 nm. The diffraction grating has a high tolerance to process variations based on Monte Carlo analysis. When the conditions are ±5% layer thickness variation, ±50nm lithographic variation, and ±20nm wavelength drift, more than 71% of the grating samples have a diffraction efficiency higher than 80%, and 100% of the samples have an effective length larger than 200 µm (corresponding to a far-field divergence <0.2∘). Furthermore, the near-field effective length of the grating with an upward diffraction efficiency above 90% can be adjusted from hundreds of microns to centimeters by changing the etching layer thickness and the grating duty cycle. This diffraction grating has a potential application in optical sensing and imaging from visible to near-IR wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...