Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375306

RESUMO

Micro-electrical discharge machining (micro-EDM) is a good candidate for processing micro-hole arrays, which are critical features of micro-electro-mechanical systems (MEMS), diesel injector nozzles, inkjet printheads and turbine blades, etc. In this study, the wire vibration of the wire electro-discharge grinding (WEDG) system has been analyzed theoretically, and, accordingly, an improved WEDG method was developed to fabricate micron-scale diameter and high-aspect-ratio microelectrodes for the in-process micro-EDM of hole array with hole diameter smaller than 20 µm. The improved method has a new feature of a positioning device to address the wire vibration problem, and thus to enhance microelectrodes fabrication precision. Using this method, 14 µm diameter microelectrodes with less than 0.4 µm deviation and an aspect ratio of 142, which is the largest aspect ratio ever reported in the literature, were successfully fabricated. These microelectrodes were then used to in-process micro-EDM of hole array in stainless steel. The effects of applied voltage, current and pulse frequency on hole dimensional accuracy and microelectrode wear were investigated. The optimal processing parameters were selected using response-surface experiments. To improve machining accuracy, an in-process touch-measurement compensation strategy was applied to reduce the cumulative compensation error of the micro-EDM process. Using such a system, micro-hole array (2 × 80) with average entrance diameter 18.91 µm and average exit diameter 17.65 µm were produced in 50 µm thickness stainless steel sheets, and standard deviations of hole entrance and exit sides of 0.44 and 0.38 µm, respectively, were achieved.

2.
Korean J Radiol ; 16(2): 410-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741203

RESUMO

OBJECTIVE: To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. MATERIALS AND METHODS: Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. RESULTS: The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). CONCLUSION: The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (≥ 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.


Assuntos
Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Feminino , Humanos , Masculino , Radiografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...