Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114367, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876360

RESUMO

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.

2.
Eur J Pharm Biopharm ; 190: 284-293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532638

RESUMO

Artesunate (ART) has potent anticancer activity but it suffers from poor stability and low bioavailability in vivo due to the special endoperoxide moiety in the molecules. In this work, we fabricated programmable enzyme/reactive oxygen species (ROS) responsive ART complex carriers with size and charge adaptive regulation in order to improve stability and overcome biochemical hurdles of solid tumor. The complex carries (ART/AA-PAMAM@HA) were created by electrostatic interaction between dendrimer-ART/arachidonic acid (AA) (ART/AA-PAMAM) and hyaluronic acid (HA), which can proactively penetrate deeply into tumors and selective drug release. Specifically, ART induced Fenton reaction and produced a mass of ROS and lipid peroxides (LPO), leading to the depressing of GSH level and glutathione peroxidase 4 (GPX4) activity. Meanwhile, exogenous AA further promoted the accumulation of LPO by cascade regulating ferroptosis pathway. In the anti-tumor efficacy in vivo, the tumor inhibition ratio was achieved to 46.92%. This work shows a new anti-tumor strategy triggering ferroptosis via regulating redox homeostasis.


Assuntos
Ferroptose , Neoplasias , Humanos , Artesunato/farmacologia , Espécies Reativas de Oxigênio , Disponibilidade Biológica , Ácido Hialurônico , Peróxidos Lipídicos
3.
Biomater Adv ; 151: 213451, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150081

RESUMO

Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.


Assuntos
Hipertermia Induzida , Neoplasias Nasofaríngeas , Pró-Fármacos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Poliésteres , Mamíferos
4.
Carbohydr Polym ; 282: 119087, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123755

RESUMO

The efficient triggering of prodrug release has become a challengeable task for stimuli-responsive nanomedicine utilized in cancer therapy due to the subtle differences between normal and tumor tissues and heterogeneity. In this work, a dual ROS-responsive nanocarriers with the ability to self-regulate the ROS level was constructed, which could gradually respond to the endogenous ROS to achieve effective, hierarchical and specific drug release in cancer cells. In brief, DOX was conjugated with MSNs via thioketal bonds and loaded with ß-Lapachone. TPP modified chitosan was then coated to fabricate nanocarriers for mitochondria-specific delivery. The resultant nanocarriers respond to the endogenous ROS and release Lap specifically in cancer cells. Subsequently, the released Lap self-regulated the ROS level, resulting in the specific DOX release and mitochondrial damage in situ, enhancing synergistic oxidation-chemotherapy. The tumor inhibition Ratio was achieved to 78.49%. The multi-functional platform provides a novel remote drug delivery system in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Naftoquinonas/administração & dosagem , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/administração & dosagem , Quitosana/química , Quitosana/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Mitocôndrias/fisiologia , Nanopartículas/química , Naftoquinonas/química , Naftoquinonas/farmacocinética , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Oxirredução , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Carga Tumoral/efeitos dos fármacos
5.
Pharmacol Res ; 172: 105800, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363949

RESUMO

Hepatocellular carcinoma (HCC) is one of the major cancers with high mortality rate. Traditional drugs used in clinic are usually limited by the drug resistance and side effect and novel agents are still needed. Macrolide brefeldin A (BFA) is a well-known lead compound in cancer chemotherapy, however, with poor solubility and instability. In this study, to overcome these disadvantages, BFA was encapsulated in mixed nanomicelles based on TPGS and F127 copolymers (M-BFA). M-BFA was conferred high solubility, colloidal stability, and capability of sustained release of intact BFA. In vitro, M-BFA markedly inhibited the proliferation, induced G0/G1 phase arrest, and caspase-dependent apoptosis in human liver carcinoma HepG2 cells. Moreover, M-BFA also induced autophagic cell death via Akt/mTOR and ERK pathways. In HepG2 tumor-bearing xenograft mice, indocyanine green (ICG) as a fluorescent probe loaded in M-BFA distributed to the tumor tissue rapidly, prolonged the blood circulation, and improved the tumor accumulation capacity. More importantly, M-BFA (10 mg/kg) dramatically delayed the tumor progression and induced extensive necrosis of the tumor tissues. Taken together, the present work suggests that M-BFA has promising potential in HCC therapy.


Assuntos
Antineoplásicos/administração & dosagem , Brefeldina A/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Nanoestruturas/administração & dosagem , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Brefeldina A/sangue , Brefeldina A/química , Brefeldina A/farmacocinética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Polietilenos/administração & dosagem , Polietilenos/química , Polipropilenos/administração & dosagem , Polipropilenos/química , Ratos Sprague-Dawley , Distribuição Tecidual , Vitamina E/administração & dosagem , Vitamina E/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...