Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep Med ; 4(10): 101229, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37820722

RESUMO

Although promising, dendritic cell (DC) vaccines still provide limited clinical benefits, mainly due to the immunosuppressive tumor microenvironment (TME) and the lack of tumor-associated antigens (TAAs). Oncolytic virus therapy is an ideal strategy to overcome immunosuppression and expose TAAs; therefore, they may work synergistically with DC vaccines. In this study, we demonstrate that oncolytic virus M1 (OVM) can enhance the antitumor effects of DC vaccines across diverse syngeneic mouse tumor models by increasing the infiltration of CD8+ effector T cells in the TME. Mechanically, we show that tumor cells counteract DC vaccines through the SIRPα-CD47 immune checkpoint, while OVM can downregulate SIRPα in DCs and CD47 in tumor cells. Since OVM upregulates PD-L1 in DCs, combining PD-L1 blockade with DC vaccines and OVM further enhances antitumor activity. Overall, OVM strengthens the antitumor efficacy of DC vaccines by targeting the SIRPα-CD47 axis, which exerts dominant immunosuppressive effects on DC vaccines.


Assuntos
Vírus Oncolíticos , Vacinas , Camundongos , Animais , Vírus Oncolíticos/genética , Antígeno CD47/genética , Antígeno B7-H1 , Linhagem Celular Tumoral , Antígenos de Neoplasias
3.
Signal Transduct Target Ther ; 6(1): 308, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408131

RESUMO

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses. RNA sequencing shows that HIF-1α signaling, immune response, and metabolism pathways are dysregulated in COVID-19 patients. Clinical analyses indicate that HIF-1α production, inflammatory responses, and high mortalities occurr in elderly patients. HIF-1α and pro-inflammatory cytokines are elicited in patients and infected cells. Interestingly, SARS-CoV-2 ORF3a induces mitochondrial damage and Mito-ROS production to promote HIF-1α expression, which subsequently facilitates SARS-CoV-2 infection and cytokines production. Notably, HIF-1α also broadly promotes the infection of other viruses. Collectively, during SARS-CoV-2 infection, ORF3a induces HIF-1α, which in turn aggravates viral infection and inflammatory responses. Therefore, HIF-1α plays an important role in promoting SARS-CoV-2 infection and inducing pro-inflammatory responses to COVID-19.


Assuntos
COVID-19/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Proteínas Viroporinas/metabolismo , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/patologia , RNA-Seq , Células THP-1 , Células Vero
4.
FEBS Lett ; 595(19): 2463-2478, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407203

RESUMO

The activation of the NLRP3 inflammasome plays a crucial role in the innate immune response. During cell division, NLRP3 inflammasome activation must be strictly controlled. In this study, we discover that the anaphase-promoting complex subunit 10 (APC10), a substrate recognition protein of the anaphase-promoting complex/cyclosome (APC/C), is a critical mediator of NLRP3 inflammasome activation. During interphase, APC10 interacts with NLRP3 to promote NLRP3 inflammasome activation, whereas during mitosis, APC10 disassociates from the NLRP3 inflammasome to repress inflammatory responses. This study reveals a distinct mechanism by which APC10 serves as a switch for NLRP3 inflammasome activation during the cell cycle.


Assuntos
Subunidade Apc10 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Ubiquitinação
5.
Virulence ; 12(1): 1795-1807, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34282707

RESUMO

Zika virus (ZIKV) infection can cause severe neurological disorders, including Guillain-Barre syndrome and meningoencephalitis in adults and microcephaly in fetuses. Here, we reveal that laminin receptor 1 (LAMR1) is a novel host resistance factor against ZIKV infection. Mechanistically, we found that LAMR1 binds to ZIKV envelope (E) protein via its intracellular region and attenuates E protein ubiquitination through recruiting the deubiquitinase eukaryotic translation initiation factor 3 subunit 5 (EIF3S5). We further found that the conserved G282 residue of E protein is essential for its interaction with LAMR1. Moreover, a G282A substitution abolished the binding of E protein to LAMR1 and inhibited LAMR1-mediated E protein deubiquitination. Together, our results indicated that LAMR1 represses ZIKV infection through binding to E protein and attenuating its ubiquitination.


Assuntos
Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo , Ubiquitinação , Proteínas do Envelope Viral/química , Infecção por Zika virus , Humanos , Zika virus
6.
Biology (Basel) ; 10(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803505

RESUMO

Apoptosis is a very important process of cell death controlled by multiple genes during which cells undergo certain events before dying. Apoptosis helps to clean the unnecessary cells and has critical physiological significance. Altered apoptosis results in a disorder of cell death and is associated with many diseases such as neurodegenerative diseases and cancers. Here, we reported that the ankyrin repeat and SOCS box protein 17 (ASB17) was mainly expressed in the testis and promoted apoptosis both in vivo and in vitro. Analyzing ASB17-deficient mice generated by using the CRISPR/Cas9 system, we demonstrated that ASB17 deficiency resulted in the reduction of apoptosis in spermatogenic cells, but it did not affect the development of spermatozoa or normal fertility. Next, in an in vivo model, ASB17 deficiency prevented the apoptosis of spermatogonia induced by etoposide in male mice. We noted that ASB17 promoted apoptosis in a caspase-dependent manner in vitro. Moreover, ASB17 interacted with the members of the BCL2 family, including BCL2, BCLX, BCLW, and MCL1. Interestingly, ASB17 specifically degraded the two anti-apoptotic factors, BCLW and MCL1, in a ubiquitylation-dependent fashion. Collectively, our findings suggested that ASB17 acted as a distinct positive regulator of cell apoptosis.

7.
Cell Rep ; 33(3): 108297, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086059

RESUMO

The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.


Assuntos
Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transativadores/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Adulto , Animais , Doenças Autoimunes , Autoimunidade/imunologia , China , Feminino , Humanos , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/fisiologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nucleotidiltransferases/fisiologia , Transdução de Sinais/genética , Transativadores/genética , Transativadores/imunologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/imunologia
8.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694949

RESUMO

Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with ß-arrestin1 and that ß-arrestin1 interacted with the ß2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either ß-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the ß-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-ß-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.


Assuntos
Endocitose , Vírus da Influenza A/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Internalização do Vírus , Células A549 , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células RAW 264.7 , Receptores Acoplados a Proteínas G/genética , Replicação Viral/fisiologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
9.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213560

RESUMO

Avian influenza viruses (AIVs) must acquire mammalian-adaptive mutations before they can efficiently replicate in and transmit among humans. The PB2 E627K mutation is known to play a prominent role in the mammalian adaptation of AIVs. The H7N9 AIVs that emerged in 2013 in China easily acquired the PB2 E627K mutation upon replication in humans. Here, we generate a series of reassortant or mutant H7N9 AIVs and test them in mice. We show that the low polymerase activity attributed to the viral PA protein is the intrinsic driving force behind the emergence of PB2 E627K during H7N9 AIV replication in mice. Four residues in the N-terminal region of PA are critical in mediating the PB2 E627K acquisition. Notably, due to the identity of viral PA protein, the polymerase activity and growth of H7N9 AIV are highly sensitive to changes in expression levels of human ANP32A protein. Furthermore, the impaired viral polymerase activity of H7N9 AIV caused by the depletion of ANP32A led to reduced virus replication in Anp32a-/- mice, abolishing the acquisition of the PB2 E627K mutation and instead driving the virus to acquire the alternative PB2 D701N mutation. Taken together, our findings show that the emergence of the PB2 E627K mutation of H7N9 AIV is driven by the intrinsic low polymerase activity conferred by the viral PA protein, which also involves the engagement of mammalian ANP32A.IMPORTANCE The emergence of the PB2 E627K substitution is critical in the mammalian adaptation and pathogenesis of AIV. H7N9 AIVs that emerged in 2013 possess a prominent ability in gaining the PB2 E627K mutation in humans. Here, we demonstrate that the acquisition of the H7N9 PB2 E627K mutation is driven by the low polymerase activity conferred by the viral PA protein in human cells, and four PA residues are collectively involved in this process. Notably, the H7N9 PA protein leads to significant dependence of viral polymerase function on human ANP32A protein, and Anp32a knockout abolishes PB2 E627K acquisition in mice. These findings reveal that viral PA and host ANP32A are crucial for the emergence of PB2 E627K during adaptation of H7N9 AIVs to humans.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Subtipo H7N9 do Vírus da Influenza A/genética , RNA Polimerase Dependente de RNA/genética , Vírus Reordenados/genética , Proteínas Virais/genética , Animais , Galinhas , China , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
10.
PLoS Pathog ; 14(1): e1006851, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352288

RESUMO

Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin ß, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Células A549 , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Cães , Regulação para Baixo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas do Nucleocapsídeo , Ligação Proteica , Transporte Proteico
11.
Sci Bull (Beijing) ; 63(3): 176-186, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659003

RESUMO

The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new countermeasures to combat the threat of influenza. Here, replication-competent IAVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic potential. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two passages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover, the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the H7N9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...