Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 6963-6976, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439389

RESUMO

Polarization modulation of electromagnetic waves plays an important role in the field of optics and optoelectronics. Current polarization optics are typically limited to the modulation in a single transverse plane. However, manipulating polarization along the longitudinal direction is also important for full-space polarization modulation. Here, we propose two kinds of all-dielectric terahertz metasurfaces for longitudinally spatial polarization manipulation. The metasurfaces are capable of controlling polarization along the propagation path, namely: i) a longitudinal bifocal metalens with different polarization states at each focal point, and ii) a versatile metalens can simultaneously generate a uniformly polarized focused beam and a vector beam with varying polarization along the propagation path. Furthermore, the measurement of the dielectric thickness is demonstrated based on the polarization modulation feature of the metalens. The proposed metasurfaces allow for effective polarization state alteration along the propagation path, exhibiting significant potential for applications in versatile light-matter interactions, optical communications, and quantum optics.

2.
Regen Biomater ; 11: rbae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529352

RESUMO

Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.

3.
Microsyst Nanoeng ; 9: 111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705925

RESUMO

Reconfigurable modular microfluidics presents an opportunity for flexibly constructing prototypes of advanced microfluidic systems. Nevertheless, the strategy of directly integrating modules cannot easily fulfill the requirements of common applications, e.g., the incorporation of materials with biochemical compatibility and optical transparency and the execution of small batch production of disposable chips for laboratory trials and initial tests. Here, we propose a manufacturing scheme inspired by the movable type printing technique to realize 3D free-assembly modular microfluidics. Double-layer 3D microfluidic structures can be produced by replicating the assembled molds. A library of modularized molds is presented for flow control, droplet generation and manipulation and cell trapping and coculture. In addition, a variety of modularized attachments, including valves, light sources and microscopic cameras, have been developed with the capability to be mounted onto chips on demand. Microfluidic systems, including those for concentration gradient generation, droplet-based microfluidics, cell trapping and drug screening, are demonstrated. This scheme enables rapid prototyping of microfluidic systems and construction of on-chip research platforms, with the intent of achieving high efficiency of proof-of-concept tests and small batch manufacturing.

4.
Biosensors (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551052

RESUMO

Droplet-based microfluidics has a variety of applications, such as material synthesis and single-cell analysis. In this paper, we propose a modular microfluidic system using projection micro-stereolithography three-dimensional (3D) printing technology for droplet generation. All modules are designed using a standard cubic structure with a specific leakage-free connection interface. Versatile droplets, including single droplets, alternating droplets, merged droplets, and Janus particles, have been successfully produced. The droplet size and the generation rate can be flexibly controlled by adjusting the flow rates. The influence of the flow rate fraction between the discrete phase and the continuous phase over the generation of the alternating and merged droplets is discussed. Furthermore, the 'UV curing' module can be employed to solidify the generated droplets to avoid coalescence and fix the status of the Janus particles. The proposed modular droplet generators are promising candidates for various chemical and biological applications, such as single-cell incubation, screening of protein crystallization conditions, synthesis of nanoparticles, and gene delivery. In addition, we envision that more functional modules, e.g., valve, microreactor, and detection modules, could be developed, and the 3D standardized modular microfluidics could be further applied to other complex systems, i.e., concentration gradient generators and clinical diagnostic systems.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Impressão Tridimensional , Análise de Célula Única , Técnicas Analíticas Microfluídicas/métodos
5.
Lab Chip ; 21(22): 4390-4400, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704106

RESUMO

In the chemical and biological fields, the creation of concentration gradient microenvironments is an important approach for many applications, such as crystal growth and drug screening. Although many concentration gradient generators have been demonstrated, current generators can hardly produce ultra-long linear concentration gradients. In this paper, we propose a concentration-gradient flow/droplet generator which consists of a microfluidic flow switch, a cavity array for stage-by-stage concentration dilution, and an optional T-junction for droplet formation. The generator can realize an ultra-long continuously-varying concentration gradient along the flow direction. Generation of a 38 mm concentration gradient was demonstrated. The length can be further extended by enlarging the capacity of the cavities and increasing the number of the stages. The concentration gradient showed high linearity in the range of 10% to 90%. Moreover, cyclic generation of a concentration gradient flow and droplets with different concentrations was realized by the generator. In a demonstration of drug screening, the generator was employed to produce paclitaxel in different concentrations. A negative correlation between the 4T1 cell viability and the paclitaxel concentration was observed after the treatment. We envision that the concentration gradient generator will be a promising candidate for various drug screening applications.


Assuntos
Microfluídica
6.
Micromachines (Basel) ; 12(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803303

RESUMO

Cell trapping is a very useful technique in a variety of cell-based assays and cellular research fields. It requires a high-throughput, high-efficiency operation to isolate cells of interest and immobilize the captured cells at specific positions. In this study, a dentate spiral microfluidic structure is proposed for cell trapping. The structure consists of a main spiral channel connecting an inlet and an out and a large number of dentate traps on the side of the channel. The density of the traps is high. When a cell comes across an empty trap, the cell suddenly makes a turn and enters the trap. Once the trap captures enough cells, the trap becomes closed and the following cells pass by the trap. The microfluidic structure is optimized based on the investigation of the influence over the flow. In the demonstration, 4T1 mouse breast cancer cells injected into the chip can be efficiently captured and isolated in the different traps. The cell trapping operates at a very high flow rate (40 µL/s) and a high trapping efficiency (>90%) can be achieved. The proposed high-throughput cell-trapping technique can be adopted in the many applications, including rapid microfluidic cell-based assays and isolation of rare circulating tumor cells from a large volume of blood sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...