Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109902, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812540

RESUMO

Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy, leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in overcoming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused on YTHDF2, an N6-methyladenosine (m6A) RNA-reader protein, in macrophages, one of the most abundant intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro deprivation of YTHDF2 favors anti-tumoral effect. Expressions of multiple transcription factors, especially SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could be a promising strategy for chemoresistant TNBC.

2.
ACS Appl Mater Interfaces ; 15(18): 21781-21791, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115169

RESUMO

Antimicrobial polymers exhibit great potential for treating drug-resistant bacteria; however, designing antimicrobial polymers that can selectively kill bacteria and cause relatively low toxicity to normal tissues/cells remains a key challenge. Here, we report a pH window for ionizable polymers that exhibit high selectivity toward bacteria. Ionizable polymer PC6A showed the greatest selectivity (131.6) at pH 7.4, exhibiting low hemolytic activity and high antimicrobial activity against bacteria, whereas a very high or low protonation degree (PD) produced relatively low selectivity (≤35.6). Bactericidal mechanism of PC6A primarily comprised membrane lysis without inducing drug resistance even after consecutive incubation for 32 passages. Furthermore, PC6A demonstrated synergistic effects in combination with antibiotics at pH 7.4. Hence, this study provides a strategy for designing selective antimicrobial polymers.


Assuntos
Antibacterianos , Concentração de Íons de Hidrogênio , Antibacterianos/química , Antibacterianos/farmacologia , Polímeros/química , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
3.
Antibiotics (Basel) ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740143

RESUMO

Disinfectant resistance is evolving into a serious problem due to the long-term and extensive use of disinfectants, which brings great challenges to hospital infection control. As a notorious multidrug-resistant bacterium, carbapenem-resistant Klebsiella pneumoniae (CRKP) is one of the most common and difficult pathogens of nosocomial infection. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests of seven kinds of disinfectants (0.1% benzalkonium bromide, 4% aqueous chlorhexidine, 75% alcohol, entoiodine II, 2% glutaraldehyde, 2000 mg/L chlorine-containing disinfectants, and 3% hydrogen peroxide) were detected by the broth dilution method. Three efflux pump genes (oqxA, oqxB, and qacE∆1-sul1) were detected by PCR. The mean MIC value of aqueous chlorhexidine from the intensive care unit (ICU) (0.0034%) was significantly higher than that from non-ICUs (0.0019%) (p < 0.05). The positive rates of three efflux pump genes oqxA, oqxB and qacE∆1-sul1 were 60.9% (39/64), 17.2% (11/64) and 71.9% (46/64) in the detected CRKP isolates, respectively. This study discovered that CRKP strains demonstrated extensive resistance to clinical disinfectants and suggest that it is necessary to perform corresponding increases in the concentration of aqueous chlorhexidine and chlorine-containing disinfectants on the basis of current standards in the healthcare industry.

4.
Front Oncol ; 12: 865121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433455

RESUMO

Background: Growing evidence supports the modulatory role of human gut microbiome on neoadjuvant chemotherapy (NAC) efficacy. However, the relationships among the gut microbiome, tumor-infiltrating lymphocytes (TILs), and NAC response for breast cancer (BC) patients remain unclear. We thus proposed this preliminary study to investigate the relationship between gut microbiome and BC patients' responses to NAC treatment as well as underlying mechanisms. Methods: Prior to receiving NAC, the fecal metagenome collected from 23 patients with invasive BC was analyzed. Patients were subsequently assigned to the NAC non-effectual group and the NAC effectual group based on their response to NAC. The peripheral T lymphocyte subset counts were examined by flow cytometry methods. CellMinor analysis was employed to explore the relationship between CD4 mRNA expression and the reaction of tumor cells to NAC drugs. Results: The gut microbiomes of the NAC non-effectual group showed characteristics of low diversity with low abundances, distinct metagenomic composition with decreased butyrate-producing and indolepropionic acid-producing bacteria, and increased potential pathobionts compared with the NAC effectual group. The combination of Coprococcus, Dorea, and uncultured Ruminococcus sp. serves as signature bacteria for distinguishing NAC non-effectual group patients from the NAC effectual group. The absolute numbers of CD4+ and CD8+ TIL infiltration in tumors in the NAC non-effectual group were significantly lower than those in the effectual group. Similar findings were reported for the CD4+ T lymphocytes in the peripheral blood (p's < 0.05). NAC effectual-related signature bacteria were proportional to these patients' CD4+ T lymphocyte counts in peripheral blood and tumors (p's < 0.05). CellMinor analysis showed that the CD4 mRNA expression level dramatically climbed with increased sensitivity of tumor cells to NAC drugs such as cyclophosphamide, cisplatin, and carboplatin (p's < 0.05). Conclusions: The composition of the gut microbial community differs between BC patients for whom NAC is effective to those that are treatment resistant. The modulation of the gut microbiota on host CD4+ T lymphocytes may be one critical mechanism underlying chemosensitivity and NAC pathologic response. Taken together, gut microbiota may serve as a potential biomarker for NAC response, which sheds light on novel intervention targets in the treatment of NAC non-effectual BC patients.

5.
Platelets ; 33(7): 1009-1017, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068286

RESUMO

Platelets counts increase in various cancer patients, which is associated with poor prognosis. However, the cause of high platelet counts in cancer patients is still not fully understood. Here we demonstrated that compared with healthy controls, there were significant differences in platelet parameters, mean platelet volume (MPV), platelet distribution width (PDW), platelet larger cell ratio (P-LCR), and platelet crit (PCT), reflecting platelet volume in breast cancer patients by clinical retrospective analysis. The mitochondrial transmembrane potential (ΔΨm) depolarization and phosphatidylserine (PS) externalization declined, accompanied by reduced expression of pro-apoptotic factors Bak, Bax and apoptotic executor caspase-3, and elevated of anti-apoptotic factor Bcl-xl in various cancer patients' platelets. Notably, the phosphorylation level of Akt and its downstream target Bad increased in platelets from cancer patients. MK2206, the inhibitor of Akt, reduced the phosphorylation level of Akt and Bad, and induced apoptosis of platelets. When platelets from healthy controls cocultured with the cultural supernatant of cancer cells, the phosphorylation level of Akt and Bad in the platelets was elevated and the cultural supernatant of cancer cells could rescue the apoptosis of platelet induced by MK2206. Therefore, in our study the apoptosis of platelets in cancer patients was declined, which exerted an influence on the rise of platelet counts in breast cancer patients. The cross-talking between tumor and platelets could affect platelet apoptosis by regulating Akt signaling pathway in platelets.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Apoptose , Plaquetas/metabolismo , Feminino , Humanos , Contagem de Plaquetas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos
6.
Immun Inflamm Dis ; 9(4): 1428-1438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34647429

RESUMO

INTRODUCTION: Diabetic foot ulcer infection (DFI) is an infectious disease of the skin and soft tissue in diabetics notorious for making rapid progress and being hard to cure. Staphylococcus aureus (S. aureus), most frequently detected in DFI, recently was suggested as an intracellular pathogen that can invade and survive within mammalian host cells. Autophagy in macrophages plays a vital immune role in combating intracellular pathogens through bacterial destruction, but there is a lack of empirical research about the infection characteristics and autophagy in diabetic skin infection. METHODS: Here, we used streptozotocin-induced Sprague Dawley rats as a diabetic skin wound model to examine the S. aureus clearance ability and wound healing in vitro. Western blot and immunofluorescence staining were used to evaluate the autophagic flux of the macrophages in diabetic rats dermis, even with S. aureus infection. RESULTS: We demonstrated that infections in diabetic rats appeared more severe and more invasive with weakened pathogen clearance ability of the host immune system, which coincided with the suppressed autophagic flux in dermal macrophages, featured by a significant increase in endogenous LC3II/I and in p62. CONCLUSIONS: Our results first provided convincing evidence that autophagy of macrophages was dysfunctional in diabetes, especially after being infected by S. aureus, which weakens the intracellular killing of S. aureus, potentially worsens the infections, and accelerates the infection spread in the diabetic rat model. Further understanding of the special immune crosstalk between diabetes host and S. aureus infection through autophagic factors will help to explain the complex clinical phenomenon and guarantee the development of effective therapies for diabetic foot infections.


Assuntos
Diabetes Mellitus Experimental , Infecções Estafilocócicas , Animais , Autofagia , Macrófagos , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus , Estreptozocina/toxicidade
7.
Emerg Microbes Infect ; 10(1): 700-709, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33739229

RESUMO

Bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are potentially life-threatening and an urgent threat to public health. The present study aims to clarify the characteristics of carbapenemase-encoding and virulent plasmids, and their interactions with the host bacterium. A total of 425 Kp isolates were collected from the blood of BSI patients from nine Chinese hospitals, between 2005 and 2019. Integrated epidemiological and genomic data showed that ST11 and ST307 Kp isolates were associated with nosocomial outbreak and transmission. Comparative analysis of 147 Kp genomes and 39 completely assembled chromosomes revealed extensive interruption of acrR by ISKpn26 in all Kp carbapenemase-2 (KPC-2)-producing ST11 Kp isolates, leading to activation of the AcrAB-Tolc multidrug efflux pump and a subsequent reduction in susceptibility to the last-resort antibiotic tigecycline and six other antibiotics. We described 29 KPC-2 plasmids showing diverse structures, two virulence plasmids in two KPC-2-producing Kp, and two novel multidrug-resistant (MDR)-virulent plasmids. This study revealed a multifactorial impact of KPC-2 plasmid on Kp, which may be associated with nosocomial dissemination of MDR isolates.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Sepse/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China/epidemiologia , Farmacorresistência Bacteriana , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Mariposas , Filogenia , Sepse/epidemiologia , Virulência , beta-Lactamases/genética , beta-Lactamases/metabolismo
8.
Gut Pathog ; 12(1): 55, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33292487

RESUMO

The emergence and transmission of the mobile colistin resistance gene (mcr-1) threatened the extensive use of polymyxin antimicrobials. Accumulated evidence showed that the banning of colistin additive in livestock feed efficiently reduce mcr-1 prevalence, not only in animals but also in humans and environments. However, our previous study has revealed that a small proportion of Escherichia coli could continually carry chromosomally-encoded mcr-1. The chromosomally-encoded events, indicated the existence of stabilized heritage of mcr-1 and revealed a potential threat in the antimicrobial stewardship interventions, are yet to be investigated. In this study, we systematically investigated the genetic basis of chromosomally-encoded mcr-1 in prevalence and potential mechanisms of lineage, plasmid, insertion sequence, and phage. Our results demonstrated that the emergence of chromosomally-encoded mcr-1 could originate from multiple mechanisms, but mainly derived through the recombination of ISApl1/Tn6330. We reported a specific transmission mechanism, which is a phage-like region without lysogenic components, could associate with the emergence and stabilization of chromosomally-encoded mcr-1. These results highlighted the potential origin and risks of chromosomally-encoded mcr-1, which could be a heritable repository and thrive again when confronted with new selective pressures. To the best of our knowledge, this is the first study to systematically reveal the genomic basis of chromosomally-encoded mcr-1, and report a specific transmission pattern involved in phage-like region. Overall, we demonstrate the origin mechanisms and risks of chromosomally-encoded mcr-1. It highlights the need of public attention on chromosome-encoded mcr-1 to prevent from its reemergence.

9.
Front Microbiol ; 11: 1479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765439

RESUMO

Bacterial biofilms do serious harm to the diabetic foot ulcer (DFU) because they play a crucial role in infection invasion and spread. Staphylococcus aureus, the predominant Gram-positive bacteria in diabetic foot infection (DFI), is often associated with colonization and biofilm formation. Through biofilm formation tests in vitro, we observed that S. aureus bacteria isolated from DFU wounds were more prone to form biofilms than those from non-diabetic patients, while there was no difference in blood sugar between the biofilm (+) diabetics (DB+) and biofilm (-) diabetics (DB-). Furthermore, we found that advanced glycation end products (AGEs) promoted the biofilm formation of S. aureus in clinical isolates and laboratory strains in vitro, including a methicillin-resistant strain. Analysis of biofilm components demonstrated that the biofilms formed mainly by increasing extracellular DNA (eDNA) release; remarkably, the S. aureus global regulator sigB was upregulated, and its downstream factor lrgA was downregulated after AGE treatments. Mechanism studies using a sigB-deleted mutant (Newman-ΔsigB) confirmed that AGEs decreased expression of lrgA via induction of sigB, which is responsible for eDNA release and is a required component for S. aureus biofilm development. In conclusion, the present study suggests that AGEs promote S. aureus biofilm formation via an eDNA-dependent pathway by regulating sigB. The data generated by this study will provide experimental proof and theoretical support to improve DFU infection healing.

10.
Eur J Immunol ; 50(8): 1174-1186, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32250445

RESUMO

Staphylococcus aureus, a pathogen most frequently found in diabetic foot ulcer infection, was recently suggested as an intracellular pathogen. Autophagy in professional phagocytes like macrophages allows selective destruction of intracellular pathogens, and its dysfunction can increase the survival of internalized pathogens, causing infections to worsen and spread. Previous works have shown that S. aureus infections in diabetes appeared more severe and invasive, and coincided with the suppressed autophagy in dermal tissues of diabetic rat, but the exact mechanisms are unclear. Here, we demonstrated that accumulation of advanced glycation end products (AGEs) contributed to the diminished autophagy-mediated clearance of S. aureus in the macrophages differentiated from PMA-treated human monocytic cell line THP-1. Importantly, infected macrophages showed increased S. aureus containing autophagosome, but the subsequent fusion of S. aureus containing autophagosome and lysosome was suppressed in AGEs-pretreated cells, suggesting AGEs blocked the autophagic flux and enabled S. aureus survival and escape. At the molecular level, elevated lysosomal ARL8 expression in AGEs-treated macrophages was required for AGEs-mediated inhibition of autophagosome-lysosome fusion. Silencing ARL8 in AGEs-treated macrophages restored autophagic flux and increased S. aureus clearance. Our results therefore demonstrate a new mechanism, in which AGEs accelerate S. aureus immune evasion in macrophages by ARL8-dependent suppression of autophagosome-lysosome fusion and bactericidal capability.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Produtos Finais de Glicação Avançada/fisiologia , Lisossomos/fisiologia , Macrófagos/imunologia , Fagocitose , Staphylococcus aureus/imunologia , Autofagossomos/fisiologia , Humanos , Evasão da Resposta Imune , Células THP-1 , Regulação para Cima
11.
Lancet Microbe ; 1(1): e34-e43, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-35538907

RESUMO

BACKGROUND: The global dissemination of colistin resistance encoded by mcr-1 has been attributed to extensive use of colistin in livestock, threatening colistin efficacy in medicine. The emergence of mcr-1 in common pathogens, such as Escherichia coli, is of particular concern. China banned the use of colistin in animal feed from May 1, 2017. We investigated subsequent changes in mcr-1 prevalence in animals, humans, food, and the environment, and the genomic epidemiology of mcr-1-positive E coli (MCRPEC). METHODS: Sampling was done before (October to December, 2016) and after (October to December, 2017, and 2018, respectively) the colistin ban. 3675 non-duplicate pig faecal samples were collected from 14 provinces (66 farms) in China to measure intervention-related changes in mcr-1 prevalence. 15 193 samples were collected from pigs, healthy human volunteers, patients colonised or infected with Enterobacteriaceae who were admitted to hospital, food and the environment in Guangzhou, to characterise source-specific mcr-1 prevalence and the wider ecological effect of the ban. From these samples, 688 MCRPEC were analysed with whole genome sequencing, plasmid conjugation, and S1 pulsed-field gel electrophoresis with Southern blots to characterise associated genomic changes. FINDINGS: After the ban, mcr-1 prevalence decreased significantly in national pig farms, from 308 (45%) of 684 samples in 2016 to 274 (19%) of 1416 samples in 2018 (p<0·0001). A similar decrease occurred in samples from most sources in Guangzhou (959 [19%] of 5003 samples in 2016; 238 [5%] of 4489 samples in 2018; p<0·0001). The population structure of MCRPEC was diverse (23 sequence clusters); sequence type 10 clonal complex isolates were predominant (247 [36%] of 688). MCRPEC causing infection in patients admitted to hospital were genetically more distinct and appeared less affected by the ban. mcr-1 was predominantly found on plasmids (632 [92%] of 688). Common mcr-1 plasmid types included IncX4, IncI2, and IncHI2 (502 [76%] of 656); significant increases in IncI2-associated mcr-1 and a distinct lineage of mcr-1-associated IncHI2 were observed post ban. Changes in the frequency of mcr-1-associated flanking sequences (ISApl1-negative MCRPEC), 63 core genome single nucleotide polymorphisms, and 30 accessory genes were also significantly different after the ban (Benjamini-Hochberg-adjusted p<0·05), consistent with rapid genetic adaptation in response to changing selection pressures. INTERPRETATION: A rapid, ecosystem-wide, decline in mcr-1 was observed after the use of colistin in animal feed was banned, with associated genetic changes in MCRPEC. Withdrawal of antimicrobials from animal feed should be an important One Health measure contributing to the wider control of antimicrobial resistance globally. FUNDING: National Natural Science Foundation of China.

12.
Front Cell Dev Biol ; 7: 322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867329

RESUMO

Breast cancer is the most prevalent tumor in women worldwide and about 70% patients are estrogen receptor positive. In these cancer patients, resistance to the anticancer estrogen receptor antagonist tamoxifen emerges to be a major clinical obstacle. Peptidyl-prolyl isomerase Pin1 is prominently overexpressed in breast cancer and involves in tamoxifen-resistance. Here, we explore the mechanism and effect of targeting Pin1 using its chemical inhibitor all-trans retinoic acid (ATRA) in the treatment of tamoxifen-resistant breast cancer. We found that Pin1 was up-regulated in tamoxifen-resistant human breast cancer cell lines and tumor tissues from relapsed patients. Pin1 overexpression increased the phosphorylation of ERα on S118 and stabilized ERα protein. ATRA treatment, resembling the effect of Pin1 knockdown, promoted ERα degradation in tamoxifen-resistant cells. Moreover, ATRA or Pin1 knockdown decreased the activation of ERK1/2 and AKT pathways. ATRA also reduced the nuclear expression and transcriptional activity of ERα. Importantly, ATRA inhibited cell viability and proliferation of tamoxifen-resistant human breast cancer cells in vitro. Slow-releasing ATRA tablets reduced the growth of tamoxifen-resistant human breast cancer xenografts in vivo. In conclusion, ATRA-induced Pin1 ablation inhibits tamoxifen-resistant breast cancer growth by suppressing multifactorial mechanisms of tamoxifen resistance simultaneously, which demonstrates an attractive strategy for treating aggressive and endocrine-resistant tumors.

13.
BMC Infect Dis ; 18(1): 122, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29529992

RESUMO

BACKGROUND: Medical laboratory staff are a high-risk population for colonization of Staphylococcus aureus (S. aureus) due to direct and dense contact with the pathogens; however, there is limited information about this colonization. This study sought to determine the prevalence and molecular characteristics of nasal colonization by S. aureus in medical laboratory staff in Guangzhou, southern China, and to compare the differences between microbiological laboratory (MLS) and non-microbiological laboratory (NMLS) staff. METHODS: S. aureus colonization was assessed by nasal swab cultures from 434 subjects, including 130 MLSs and 304 NMLSs from 33 hospitals in Guangzhou. All S. aureus isolates underwent the antimicrobial susceptibility test, virulence gene detection and molecular typing. RESULTS: The overall prevalence of S. aureus carriage was 20.1% (87/434), which was higher in MLSs than in NMLSs (26.2% vs. 17.4%, P < 0.05), while the prevalence of Methicillin-resistant S. aureus (MRSA) was similar. Living with hospital staff was associated with S. aureus carriage. The majority of the isolates harboured various virulence genes, and those in MLSs appeared less resistant to antibiotics and more virulent than their counterparts. A total of 37 different spa types were detected; among these, t338, t437, t189 and t701 were the most frequently encountered types. T338 was the main spa type contributing to nasal colonization Methicillin-sensitive S. aureus (MSSA) (13.0%), and t437-SCCmec IV was predominant in MRSA isolates (40%). CONCLUSIONS: These findings provide insight into the risk factors, molecular epidemiology and virulence gene profiles of S. aureus nasal carriage among the medical laboratory staff in Guangzhou.


Assuntos
Cavidade Nasal/microbiologia , Staphylococcus aureus/isolamento & purificação , Virulência/genética , Adulto , Antibacterianos/farmacologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , China/epidemiologia , Feminino , Genótipo , Pessoal de Saúde , Hospitais , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem Molecular , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adulto Jovem
14.
Ann Clin Microbiol Antimicrob ; 17(1): 11, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566704

RESUMO

BACKGROUND: Cardiobacterium is a fastidious Gram-negative bacillus, and is a rare human pathogen in clinical settings. Herein, we describe a case of Cardiobacterium valvarum (C. valvarum) endocarditis with a rare complication of cerebral hemorrhage after mitral valve replacement (MVR), tricuspid valve prosthesis (TVP) and vegetation removal operation. CASE PRESENTATION: A 41-year-old woman who had a history of gingivitis developed into infective endocarditis due to the infection of C. valvarum. Then, she was hospitalized to receive MVR, TVP and vegetation removal operation. The indicators of patient tended to be normal until the abrupt cerebral hemorrhage occurred on day 15 after operation. This is the first well-described case of C. valvarum infection in China, and the first report of C. valvarum endocarditis with cerebral hemorrhage after MVR, TVP and vegetation removal operation worldwide. CONCLUSIONS: We reported the first case of C. valvarum infection in China clinically, with a rare complication of cerebral hemorrhage after MVR, TVP and vegetation removal operation.


Assuntos
Cardiobacterium/patogenicidade , Hemorragia Cerebral/complicações , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/cirurgia , Infecções por Bactérias Gram-Negativas/microbiologia , Adulto , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Sangue/microbiologia , Cardiobacterium/efeitos dos fármacos , Cardiobacterium/isolamento & purificação , China , Endocardite Bacteriana/sangue , Endocardite Bacteriana/patologia , Feminino , Infecções por Bactérias Gram-Negativas/sangue , Infecções por Bactérias Gram-Negativas/patologia , Próteses Valvulares Cardíacas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Valva Mitral/microbiologia , Valva Mitral/cirurgia
15.
Proc Natl Acad Sci U S A ; 114(48): 12675-12680, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133389

RESUMO

Current clinical treatment of Helicobacter pylori infection, the main etiological factor in the development of gastritis, gastric ulcers, and gastric carcinoma, requires a combination of at least two antibiotics and one proton pump inhibitor. However, such triple therapy suffers from progressively decreased therapeutic efficacy due to the drug resistance and undesired killing of the commensal bacteria due to poor selectivity. Here, we report the development of antimicrobial polypeptide-based monotherapy, which can specifically kill H. pylori under acidic pH in the stomach while inducing minimal toxicity to commensal bacteria under physiological pH. Specifically, we designed a class of pH-sensitive, helix-coil conformation transitionable antimicrobial polypeptides (HCT-AMPs) (PGA)m-r-(PHLG-MHH)n, bearing randomly distributed negatively charged glutamic acid and positively charged poly(γ-6-N-(methyldihexylammonium)hexyl-l-glutamate) (PHLG-MHH) residues. The HCT-AMPs showed unappreciable toxicity at physiological pH when they adopted random coiled conformation. Under acidic condition in the stomach, they transformed to the helical structure and exhibited potent antibacterial activity against H. pylori, including clinically isolated drug-resistant strains. After oral gavage, the HCT-AMPs afforded comparable H. pylori killing efficacy to the triple-therapy approach while inducing minimal toxicity against normal tissues and commensal bacteria, in comparison with the remarkable killing of commensal bacteria by 65% and 86% in the ileal contents and feces, respectively, following triple therapy. This strategy renders an effective approach to specifically target and kill H. pylori in the stomach while not harming the commensal bacteria/normal tissues.


Assuntos
Aminas/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácido Glutâmico/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/síntese química , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Helicobacter pylori/fisiologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Especificidade de Órgãos , Conformação Proteica em alfa-Hélice , Eletricidade Estática , Estômago/efeitos dos fármacos , Estômago/microbiologia , Estômago/patologia
16.
Int J Endocrinol ; 2017: 8694903, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075293

RESUMO

OBJECTIVE: To understand the bacterial profile and antibiotic resistance patterns in diabetic foot infection (DFI) in different Wagner's grades, IDSA/IWGDF grades, and different ulcer types in Guangzhou, in order to provide more detailed suggestion to the clinician about the empirical antibiotic choice. METHODS: 207 bacteria were collected from 117 DFIs in Sun Yat-sen Memorial Hospital from Jan.1, 2010, to Dec.31, 2015. The clinical data and microbial information were analyzed. RESULTS: The proportion of Gram-negative bacteria (GNB) was higher than Gram-positive bacteria (GPB) (54.1% versus 45.9%), in which Enterobacteriaceae (73.2%) and Staphylococcus (65.2%) were predominant, respectively. With an increasing of Wagner's grades and IDSA/IWGDF grades, the proportion of GNB bacterial infection, especially Pseudomonas, was increased. Neuro-ischemic ulcer (N-IFU) was more susceptible to GNB infection. Furthermore, with the aggravation of the wound and infection, the antibiotic resistance rates were obviously increased. GPB isolated in ischemic foot ulcer (IFU) showed more resistance than the N-IFU, while GNB isolates were on the opposite. CONCLUSIONS: Different bacterial profiles and antibiotic sensitivity were found in different DFU grades and types. Clinician should try to stay updated in antibiotic resistance pattern of common pathogens in their area. This paper provided them the detailed information in this region.

17.
Oncotarget ; 8(63): 106270-106282, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29290947

RESUMO

miR-34a is significantly down-regulated in breast cancer tissues and cell lines, which may be correlated with breast cancer multi-drug resistance (MDR). Here, we conducted cell-based experiments and clinical studies in a cohort of 113 breast cancer samples to analyze miR-34a expression and breast cancer MDR. Expression of miR-34a is down-regulated in the multi-drug resistant MDR-MCF-7 cells compared with its parental cells. Patients with miR-34a low expression had poorer overall survival (OS) and disease free survival (DFS) in comparison with those with high expression. Transfecting miR-34a mimics into MDR-MCF-7 breast cancer cells led to partial MDR reversal. Compared with the control group, miR-34a significantly reduced both the mRNA and protein expressions of BCL-2, CCND1 and NOTCH1, but no obvious changes were found in P53 or TOP-2a expression. In breast cancer tissue samples, the expression of miR-34a was related to BCL-2, CCND1 and NOTCH1, but not to HER-2, P53 and TOP-2a. Altogether, our findings suggest that miR-34a is an MDR and prognosis indicator of breast cancer, which may participate in the regulation of drug-resistant breast cancer by targeting BCL-2, CCND1, and NOTCH1.

18.
BMC Infect Dis ; 16: 339, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27450316

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of both hospital and community infections globally. It's important to illuminate the differences between community-acquired MRSA (CA-MRSA) and hospital-acquired MRSA (HA-MRSA), but there have been confusions on the definition, especially for the MRSA isolates identified within 48 h of admission. This study aimed to determine the molecular characteristics and virulence genes profile of CA and HA-MRSA isolates identified less than 48 h after hospital admission in our region. METHODS: A total 62 MRSA isolates identified within 48 h after admission and the clinical data were collected. Antimicrobial susceptibility test (AST) of collected isolates were performed according to the guidelines of Clinical and Laboratory Standards Institute (CLSI) 2015, and staphylococcal cassette chromosome mec (SCCmec) typing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and virulence gene profiling were performed to explore the molecular diversity. RESULTS: SCCmec III and sequence type (ST) 239 were the most prevalent SCCmec type and ST in both CA and HA-MRSA groups. HA-MRSA group had higher prevalence of SCCmec III (87.2 %) and ST239 (79.5 %) compared with CA-MRSA (60.9 and 43.4 %, both P < 0.001), while the frequency of SCCmec IV (26.0 %) and ST59 (21.7 %) were higher in CA-MRSA than its counterpart (P < 0.001 and P = 0.003). MRSA-ST239-III was the predominant type in this study (61.3 %, 38/62), especially in HA-MRSA group (76.9 %, 30/39). However, CA-MRSA strains exhibited more diversity in genotypes in this study. Meanwhile, CA-MRSA tended to have lower resistant percentage to non-ß-lactams antibiotics but more virulence genes carriage, especially the staphylococcal enterotoxins (SE) genes. Notably, seb gene was only detected in CA-MRSA isolates (52.2 %), likely a significant marker for CA-MRSA isolates. Panton-Valentine leukocidin gene (PVL) was highly detected in both groups, while appeared no significantly different between CA-MRSA (47.8 %) and HA-MRSA (43.6 %). CONCLUSIONS: Our findings support a difference in the molecular epidemiology and virulence genes profile of CA-MRSA and HA-MRSA. Furthermore, this study indicates a possible transmission from HA-MRSA to CA-MRSA, which may cause the overlap of the definition.


Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/genética , Fatores de Virulência/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Eletroforese em Gel de Campo Pulsado , Feminino , Hospitais , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Virulência/genética , Adulto Jovem
19.
Oncotarget ; 6(33): 34758-73, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26416449

RESUMO

The infiltration of tumor-associated macrophages (TAMs) is associated with extensive angiogenesis, which contributes to a poor prognosis in breast cancer. However, anti-angiogenic therapy with VEGF-specific monotherapy has been unsuccessful in treating breast cancer, and the molecular mechanisms associated with chemoresistance remain unclear. Here, we investigated whether CCL18, a chemokine produced by TAMs, can stimulate angiogenesis in breast cancer, as well as the underlying mechanisms. Double immunohistochemical staining for CCL18 and CD34/CD31/vWF was performed in 80 breast cancer samples to study the correlation between CCL18+ TAMs and microvascular density (MVD). Cocultures of TAMs with human umbilical vein endothelial cells (HUVECs) were used to model the inflammatory microenvironment, and CCL18-induced angiogenesis was evaluated both in vitro and in vivo. We demonstrated that CCL18+ TAM infiltration positively associated with MVD in breast cancer samples, which was correlated with tumor metastasis and poor prognosis. We confirmed, both in vitro and in vivo, that CCL18 and VEGF synergistically promoted endothelial cell migration and angiogenesis. Conversely, blocking CCL18 or VEGF with neutralizing antibodies synergistically inhibited the promigratory effects of TAMs. Silencing PITPNM3, a putative CCL18 receptor, on the surface of HUVECs abrogated CCL18-mediated promigration and the enhancement of HUVEC tube formation, independently of VEGFR signaling. Moreover, CCL18 exposure induced the endothelial-mesenchymal transformation and activated ERK and Akt/GSK-3ß/Snail signaling in HUVECs, thereby contributing to its pro-angiogenic effects. In conclusion, our findings suggest that CCL18 released from TAMs promotes angiogenesis and tumor progression in breast cancer; thus, CCL18 may serve as a novel target for anti-angiogenic therapies.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Carcinoma Ductal de Mama/irrigação sanguínea , Quimiocinas CC/metabolismo , Macrófagos/metabolismo , Neovascularização Patológica/metabolismo , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
BMC Infect Dis ; 15: 312, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243258

RESUMO

BACKGROUND: Streptococcus pneumoniae infections are a major cause of global morbidity and mortality, and the emergence of antibiotic-resistant Streptococcus pneumoniae strains has been increasingly reported. This study provides up-to-date information on bacterial serotype distribution and drug resistance from S. pneumoniae clinical isolates that could guide prevention and treatment strategies for pneumococcal disease in China. METHODS: A total of 94 S. pneumoniae isolates were collected from outpatients and inpatients at one Chinese hospital from 2011-2013. Drug susceptibility and resistance was determined by minimum inhibitory concentrations (MICs). Capsular serotypes were identified by the quellung reaction test and multiplex polymerase chain reaction. RESULTS: Fifteen serotypes were identified among the 94 S. pneumoniae clinical isolates that were collected. Prevalent serotypes were 19F (42.6 %), 19A (8.5 %), 3 (8.5 %), and 6B (7.4 %). Potential immunization coverage rates for the 7-, 10- and 13-valent pneumococcal polysaccharide conjugate vaccines were 59.6, 62.6, and 79.6 %, respectively. Resistance rates to tetracycline, erythromycin, and trimethoprim/sulfamethoxazole were 91.2, 80.2 and 63.8 %, respectively. Resistance rates to penicillin, amoxicillin, ceftriaxone, and cefotaxime were 47.3, 34.1, 19.8, and 18.7 %, respectively. In almost all cases, antimicrobial resistance of the S. pneumoniae isolates in patients five years or younger was higher than isolates collected from patients aged 51 years or older. CONCLUSION: Prevalent serotypes among the 94 S. pneumoniae clinical isolates were 19F, 19A, 3, and 6B. The 13-valent pneumococcal polysaccharide conjugate vaccine covered the majority of the serotypes identified in this sample. Drug resistance varied among different serotypes and age groups. Clinical precautions should be taken to avoid the development of multidrug resistance in this potential human pathogen.


Assuntos
Infecções Pneumocócicas/diagnóstico , Streptococcus pneumoniae/genética , Adolescente , Adulto , Idoso , Antibacterianos , Criança , China/epidemiologia , DNA Bacteriano/análise , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Hospitais , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/imunologia , Prevalência , Sorotipagem , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Vacinas Conjugadas/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...