Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5546, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956055

RESUMO

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation and carbon dots synthesis. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

2.
Res Sq ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260621

RESUMO

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

3.
Nano Lett ; 23(21): 9803-9810, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879099

RESUMO

Two-dimensional exciton-polaritons in monolayer transition metal dichalcogenides (TMDs) exhibit practical advantages in valley coherence, optical nonlinearities, and even bosonic condensation owing to their light-emission capability. To achieve robust exciton-polariton emission, strong photon-exciton couplings are required at the TMD monolayer, which is challenging due to its atomic thickness. High-quality (Q) factor optical cavities with narrowband resonances are an effective approach but typically limited to a specific excitonic state of a certain TMD material. Herein, we achieve on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances spanning the whole visible spectrum. By confining broadband light at the TMD monolayer, our one type of Mie resonator on different TMDs enables enhanced light-matter interactions with multiple excitonic states simultaneously. We demonstrate multi-Rabi splittings and robust polaritonic photoluminescence in monolayer WSe2, WS2, and MoS2. The hybrid system also shows the potential to approach the ultrastrong coupling regime.

4.
Nat Commun ; 14(1): 5133, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612299

RESUMO

Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.


Assuntos
Biotecnologia , Ligante de CD40 , Temperatura Baixa , Comércio , Calefação
5.
Res Sq ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711861

RESUMO

Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.

6.
ACS Nano ; 16(7): 10878-10889, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35816157

RESUMO

Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.


Assuntos
Pinças Ópticas , Óptica e Fotônica , Lasers , Nanotecnologia/métodos , Membrana Celular
7.
Adv Mater ; 34(15): e2108721, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35170105

RESUMO

The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light-matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2 , the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near-intrinsic linewidth can be observed at RT when monolayer WS2 is coupled with a moderate-refractive-index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2 through the nanosphere-supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD-based nanophotonics and optoelectronics.

8.
ACS Appl Mater Interfaces ; 13(49): 58966-58973, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851616

RESUMO

Two-dimensional monolayer and few-layer transition-metal dichalcogenides (TMDs) are promising for advanced electronic and photonic applications due to their extraordinary optoelectronic and mechanical properties. However, it has remained challenging to produce high-quality TMD thin films with controlled thickness and desired micropatterns, which are essential for their practical implementation in functional devices. In this work, a self-limiting opto-electrochemical thinning (sOET) technique is developed for on-demand thinning and patterning of TMD flakes at high efficiency. Benefiting from optically enhanced electrochemical reactions, sOET features a low operational optical power density of down to 70 µW µm-2 to avoid photodamage and thermal damage to the thinned TMD flakes. Through selective optical excitation with different laser wavelengths based on the thickness-dependent band gaps of TMD materials, sOET enables precise control over the final thickness of TMD flakes. With the capability of thickness control and site-specific patterning, our sOET offers an effective route to fabricating high-quality TMD materials for a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...