Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990679

RESUMO

Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre-mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials.


Assuntos
Cardiomiopatias/patologia , Craniossinostoses/patologia , Doenças Hematológicas/patologia , Pneumopatias/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Craniossinostoses/etiologia , Craniossinostoses/metabolismo , Feminino , Doenças Hematológicas/etiologia , Doenças Hematológicas/metabolismo , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
2.
Cancer Discov ; 9(6): 738-755, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952657

RESUMO

KRAS is the most frequently mutated oncogene. The incidence of specific KRAS alleles varies between cancers from different sites, but it is unclear whether allelic selection results from biological selection for specific mutant KRAS proteins. We used a cross-disciplinary approach to compare KRASG12D, a common mutant form, and KRASA146T, a mutant that occurs only in selected cancers. Biochemical and structural studies demonstrated that KRASA146T exhibits a marked extension of switch 1 away from the protein body and nucleotide binding site, which activates KRAS by promoting a high rate of intrinsic and guanine nucleotide exchange factor-induced nucleotide exchange. Using mice genetically engineered to express either allele, we found that KRASG12D and KRASA146T exhibit distinct tissue-specific effects on homeostasis that mirror mutational frequencies in human cancers. These tissue-specific phenotypes result from allele-specific signaling properties, demonstrating that context-dependent variations in signaling downstream of different KRAS mutants drive the KRAS mutational pattern seen in cancer. SIGNIFICANCE: Although epidemiologic and clinical studies have suggested allele-specific behaviors for KRAS, experimental evidence for allele-specific biological properties is limited. We combined structural biology, mass spectrometry, and mouse modeling to demonstrate that the selection for specific KRAS mutants in human cancers from different tissues is due to their distinct signaling properties.See related commentary by Hobbs and Der, p. 696.This article is highlighted in the In This Issue feature, p. 681.


Assuntos
Alelos , Mutação , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Transformação Celular Neoplásica/genética , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Fenótipo , Conformação Proteica , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
3.
Cancer Res ; 77(21): 5706-5711, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993414

RESUMO

Preclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform. This effort, known as the Neurofibromatosis Preclinical Consortium (NFPC), was established to accelerate new treatments for tumors associated with neurofibromatosis type 1 (NF1). At its inception, there were no effective treatments for NF1 and few promising approaches on the horizon. Since 2008, participating laboratories have conducted 95 preclinical trials of 38 drugs or combinations through collaborations with 18 pharmaceutical companies. Importantly, these studies have identified 13 therapeutic targets, which have inspired 16 clinical trials. This review outlines the opportunities and challenges of building this type of consortium and highlights how it can accelerate clinical translation. We believe that this strategy of foundation-academic-industry partnering is generally applicable to many diseases and has the potential to markedly improve the success of therapeutic development. Cancer Res; 77(21); 5706-11. ©2017 AACR.


Assuntos
Modelos Animais de Doenças , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/complicações , Neoplasias/diagnóstico , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...