Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5680, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971819

RESUMO

Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-ß1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-ß1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.


Assuntos
Linfócitos T CD8-Positivos , Colesterol , Neoplasias Colorretais , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Animais , Colesterol/metabolismo , Camundongos , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta1/metabolismo , Memória Imunológica , ATPases Vacuolares Próton-Translocadoras/metabolismo , Microambiente Tumoral/imunologia , Receptores X do Fígado/metabolismo , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Pirrolidinas/farmacologia , Proteína Smad3/metabolismo , Camundongos Endogâmicos C57BL , Carbamatos/farmacologia
2.
Oncogene ; 42(41): 3062-3074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634009

RESUMO

Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs. Mechanistically, WNT2 was positively regulated by its transcription factor SOX4, and in turn, SOX4 was upregulated by the canonical WNT2/FZD8/ß-catenin signaling pathway to form an auto-regulatory positive feedback loop, resulting in the maintenance of GCSCs self-renewal and tumorigenicity. Furthermore, simultaneous overexpression of both WNT2 and SOX4 was correlated with poor survival and reduced responsiveness to chemotherapy in clinical GC specimens. Blocking WNT2 using a specific monoclonal antibody significantly disrupted the WNT2-SOX4 positive feedback loop in GCSCs and enhanced the chemotherapeutic efficacy when synergized with the chemo-drugs 5-fluorouracil and oxaliplatin in a GCSC-derived mouse xenograft model. Overall, this study identified a novel WNT2-SOX4 positive feedback loop as a mechanism for GCSCs-induced chemo-drugs resistance and suggested that the WNT2-SOX4 axis may be a potential therapeutic target for gastric cancer treatment.

3.
Int J Biol Sci ; 18(7): 3034-3047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541910

RESUMO

5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.


Assuntos
Neoplasias da Mama , Ornitina Descarboxilase , Purina-Núcleosídeo Fosforilase , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Ornitina Descarboxilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
4.
Gut ; 71(2): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692094

RESUMO

OBJECTIVE: Solid tumours respond poorly to immune checkpoint inhibitor (ICI) therapies. One major therapeutic obstacle is the immunosuppressive tumour microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a key component of the TME and negatively regulate antitumour T-cell response. Here, we aimed to uncover the mechanism underlying CAFs-mediated tumour immune evasion and to develop novel therapeutic strategies targeting CAFs for enhancing ICI efficacy in oesophageal squamous cell carcinoma (OSCC) and colorectal cancer (CRC). DESIGN: Anti-WNT2 monoclonal antibody (mAb) was used to treat immunocompetent C57BL/6 mice bearing subcutaneously grafted mEC25 or CMT93 alone or combined with anti-programmed cell death protein 1 (PD-1), and the antitumour efficiency and immune response were assessed. CAFs-induced suppression of dendritic cell (DC)-differentiation and DC-mediated antitumour immunity were analysed by interfering with CAFs-derived WNT2, either by anti-WNT2 mAb or with short hairpin RNA-mediated knockdown. The molecular mechanism underlying CAFs-induced DC suppression was further explored by RNA-sequencing and western blot analyses. RESULTS: A negative correlation between WNT2+ CAFs and active CD8+ T cells was detected in primary OSCC tumours. Anti-WNT2 mAb significantly restored antitumour T-cell responses within tumours and enhanced the efficacy of anti-PD-1 by increasing active DC in both mouse OSCC and CRC syngeneic tumour models. Directly interfering with CAFs-derived WNT2 restored DC differentiation and DC-mediated antitumour T-cell responses. Mechanistic analyses further demonstrated that CAFs-secreted WNT2 suppresses the DC-mediated antitumour T-cell response via the SOCS3/p-JAK2/p-STAT3 signalling cascades. CONCLUSIONS: CAFs could suppress antitumour immunity through WNT2 secretion. Targeting WNT2 might enhance the ICI efficacy and represent a new anticancer immunotherapy.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Esofágicas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteína Wnt2/metabolismo , Animais , Linfócitos T CD8-Positivos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
5.
Cancer Commun (Lond) ; 39(1): 79, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771653

RESUMO

Esophageal cancer (EC) seriously threatens human health, and a promising new avenue for EC treatment involves cancer immunotherapy. To improve the efficacy of EC immunotherapy and to develop novel strategies for EC prognosis prediction or clinical treatment, understanding the immune landscapes in EC is required. EC cells harbor abundant tumor antigens, including tumor-associated antigens and neoantigens, which have the ability to initiate dendritic cell-mediated tumor-killing cytotoxic T lymphocytes in the early stage of cancer development. As EC cells battle the immune system, they obtain an ability to suppress antitumor immunity through immune checkpoints, secreted factors, and negative regulatory immune cells. Cancer-associated fibroblasts also contribute to the immune evasion of EC cells. Some factors of the immune landscape in EC tumor microenvironment are associated with cancer development, patient survival, or treatment response. Based on the immune landscape, peptide vaccines, adoptive T cell therapy, and immune checkpoint blockade can be used for EC immunotherapy. Combined strategies are required for better clinical outcome in EC. This review provides directions to design novel and effective strategies for prognosis prediction and immunotherapy in EC.


Assuntos
Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/terapia , Humanos , Imunoterapia , Prognóstico
6.
Am J Cancer Res ; 9(9): 1889-1904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598393

RESUMO

Cancer-associated fibroblasts (CAFs) play critical roles in cancer progression and treatment failure. CAFs display extreme phenotypic heterogeneity and functional diversity. Some subpopulations of CAFs have the ability to reconstitute cancer stemness by promoting the expansion of cancer stem cells (CSCs) or by inducing the generation of CSCs from differentiated cancer cells. CAFs regulate cancer stemness in different types of solid tumors by activating a wide array of CSC-related signaling by secreting proteins and exosomes. As feedback, the CSCs can also induce the proliferation and further activation of CAFs to promote their CSC-supporting activities, thus completing the loop of CAF-CSC crosstalk. Current research on targeting CAF-CSC crosstalk could be classified into (i) specific depletion of CAF subpopulations that have CSC-supporting activities and (ii) targeting molecular signaling in CAF-CSC crosstalk, such as the IL6/STAT3, TGF-ß/SDF-1/PI3K, WNT/ß-catenin, HGF/cMET and SHH/Hh pathways. Strategies targeting CAF-CSC crosstalk may open new avenues for overcoming cancer progression and therapeutic resistance.

7.
Int J Biol Sci ; 14(12): 1658-1668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416380

RESUMO

Esophageal squamous cell carcinoma (ESCC) occurs with the highest frequency in China, especially in the high-risk Northern Chinese. Recent studies have reported that SLC22A3 is significantly downregulated in non-tumor (NT) esophageal tissues from familial ESCC patients compared with those from sporadic ESCC. However, the mechanism of how SLC22A3 regulates familial ESCC remains unknown. In this study, post hoc genome-wide association studies (GWAS) in 496 cases with a family history of upper gastrointestinal tract cancers and 1056 controls were performed and the results revealed that SLC22A3 is a novel susceptibility gene for familial ESCC. Reduced expression of SLC22A3 in NT esophageal tissues from familial ESCC patients significantly correlates with its promoter hypermethylation. Moreover, case-control study of Chinese descendants from different risk areas of China revealed that the methylation of the SLC22A3 gene in peripheral blood leukocyte (PBL) DNA samples could be a risk factor for developing ESCC in this high-risk population. Functional studies showed that SLC22A3 is a novel antioxidant gene, and deregulation of SLC22A3 facilitates heat stress-induced oxidative DNA damage and formation of γ-H2AX foci in normal esophageal epithelial cells. Collectively, we show that epigenetic alterations of SLC22A3 predispose susceptible individuals to increased risk of esophageal cancer.


Assuntos
Epigênese Genética/genética , Neoplasias Esofágicas/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Transporte de Cátions Orgânicos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Estudos de Casos e Controles , Dano ao DNA/genética , Metilação de DNA/genética , Feminino , Imunofluorescência , Predisposição Genética para Doença/genética , Resposta ao Choque Térmico , Humanos , Lentivirus/genética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo
8.
Oncotarget ; 8(39): 65957-65968, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029485

RESUMO

Frizzled (FZD) proteins are receptors for secreted WNT proteins and play a critical role in the malignant progression of various cancers. However, the role of human FZD family members in esophageal squamous cell carcinoma (ESCC) was rarely investigated. In this study, we found that the FZD7 gene was the most commonly up-regulated FZD member in ESCC cell lines compared with other FZDs. TMA studies further validated that FZD7 protein was up-regulated in 165 of 252 (65.5%) informative ESCC patients and significantly correlated with poor overall survival (P=0.001). Additionally, multivariate Cox regression analysis showed that FZD7 overexpression was an independent prognostic factor for ESCC patients. Ectopic expression of FZD7 could promote ESCC cell metastasis both in vitro and in vivo. Under WNT3A stimulation, FZD7 was able to induce the nuclear translocation of ß-catenin and activate the downstream targets of WNT/ß-catenin signaling, as well as promote epithelial-mesenchymal transition (EMT) potential in ESCC cells. Our study demonstrated for the first time that FZD7 contributes to the malignant progression of ESCC and represents a novel prognostic marker and a potential therapeutic target for ESCC patients.

9.
Proc Natl Acad Sci U S A ; 114(23): E4631-E4640, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533408

RESUMO

Like many complex human diseases, esophageal squamous cell carcinoma (ESCC) is known to cluster in families. Familial ESCC cases often show early onset and worse prognosis than the sporadic cases. However, the molecular genetic basis underlying the development of familial ESCC is mostly unknown. We reported that SLC22A3 is significantly down-regulated in nontumor esophageal tissues from patients with familial ESCC compared with tissues from patients with sporadic ESCCs. A-to-I RNA editing of the SLC22A3 gene results in its reduced expression in the nontumor esophageal tissues of familial ESCCs and is significantly correlated with lymph node metastasis. The RNA-editing enzyme ADAR2, a familial ESCC susceptibility gene identified by our post hoc genome-wide association study, is positively correlated with the editing level of SLC22A3 Moreover, functional studies showed that SLC22A3 is a metastasis suppressor in ESCC, and deregulation of SLC22A3 facilitates cell invasion and filopodia formation by reducing its direct association with α-actinin-4 (ACTN4), leading to the increased actin-binding activity of ACTN4 in normal esophageal cells. Collectively, we now show that A-to-I RNA editing of SLC22A3 contributes to the early development and progression of familial esophageal cancer in high-risk individuals.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Edição de RNA , Actinina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/secundário , Carcinoma de Células Escamosas do Esôfago , Esôfago/citologia , Esôfago/metabolismo , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Metástase Linfática/genética , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Proteínas de Transporte de Cátions Orgânicos/deficiência , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Risco
10.
Biomaterials ; 33(26): 6273-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22695069

RESUMO

A series of amphiphilic pH-responsive poly (ethylene glycol) methyl ether-b-(poly lactic acid-co-poly (ß-amino esters)) (MPEG-b-(PLA-co-PAE)) block copolymers with different PLA/PAE ratios were designed and synthesized via a Michael-type step polymerization. The molecular structures of the copolymers were confirmed with (1)H NMR and gel permeation chromatography (GPC). These amphiphilic copolymers were shown to self-assemble into core/shell micelles in aqueous solution at low concentrations, and their critical micelle concentrations (CMC) in water were 1.2-9.5 mg/L. The pH-responsive PAE segment was insoluble at pH 7.4, but it became positively charged and soluble via protonation of amino groups at pH lower than 6.5. The average particle size and zeta potential of micelles increased from 180 nm and 15 mV to 220 nm and 40 mV, respectively, when the pH decreased from 7.4 to 5.0. Doxorubicin (DOX) was loaded into the core of these micelles with a high drug loading of 18%. The in vitro DOX release from the micelles was significantly accelerated when solution pH decreased from 7.4 to 5.0. DOX release in the first 10 h appeared to follow Fickian diffusion mechanism. Toxicity test showed that the copolymers had low toxicity whereas the DOX-loaded micelles remained high cytotoxicity for HepG2 cells. The results indicate the pH-sensitive MPEG-b-(PLA-co-PAE) micelle may be a potential hydrophobic drug delivery carrier for cancer targeting therapy with sustained release.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Micelas , Polietilenoglicóis/química , Polímeros/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...