Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 10: 285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936163

RESUMO

Glaucoma is a progressive neuropathy characterized by the loss of retinal ganglion cells (RGCs). Strategies that delay or halt RGC loss have been recognized as potentially beneficial for rescuing vision in glaucoma patients. Quercetin (Qcn) is a natural and important dietary flavonoid compound, widely distributed in fruits and vegetables. Mounting evidence suggests that Qcn has numerous neuroprotective effects. However, whether Qcn exerts neuroprotective effects on RGC in glaucoma is poorly understood. In this study, we investigated the protective effect of Qcn against RGC damage in a rat chronic ocular hypertension (COHT) model invivo and hypoxia-induced primary cultured RGC damage in vitro, and we further explored the underlying neuroprotective mechanisms. We found that Qcn not only improved RGC survival and function from a very early stage of COHT invivo, it promoted the survival of hypoxia-treated primary cultured RGCs invitro via ameliorating mitochondrial function and preventing mitochondria-mediated apoptosis. Our findings suggest that Qcn has direct protective effects on RGCs that are independent of lowering the intraocular pressure (IOP). Qcn may be a promising therapeutic agent for improving RGC survival and function in glaucomatous neurodegeneration.

2.
Front Genet ; 8: 107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890726

RESUMO

Purpose: To show early, rapid and accurate molecular diagnosis of occult macular dystrophy (OMD) in a four-generation Chinese family with inherited macular dystrophy. Methods: In the current study, we comprehensively screened 130 genes involved in common inherited non-syndromic eye diseases with next-generation sequencing-based target capture sequencing of the proband of a four-generation Chinese family that has suffered from maculopathy without a definitive diagnosis for over 10 years. Variants were filtered and analyzed to identify possible disease-causing variants before validation by Sanger sequencing. Results: Two heterozygous mutations-RP1L1 c.133 C > T (p.Arg45Trp), which is a hot spot for OMD, and ABCA4 c.6119 G > A (p.Arg2040Gln), which was identified in Stargardt's disease were found in three patients, but neither of the mutations was found in the unaffected individuals in the same family, who are phenotypically normal or in the normal control volunteers. Conclusion: These results cannot only confirm the diagnosis of OMD in the proband, but also provide presymptomatic diagnosis of the proband's children before the onset of visual acuity impairment and guidance regarding the prognosis and management of these patients. Heterozygous mutations of RP1L1 c.133 C > T (p.Arg45Trp) and ABCA4 c.6119 G > A (p.Arg2040Gln) are likely responsible for OMD. Our results further extend our current understanding of the genetic basis of OMD, and emphasize the importance of molecular diagnosis and genetic counseling for OMD.

3.
Cell Physiol Biochem ; 33(5): 1359-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24853233

RESUMO

BACKGROUND: Gastric cancer is one of the most common cancers in the world. MAC30/Transmembrane protein 97 (TMEM97) is aberrantly up-regulated in many human carcinoma cells. However, the function of MAC30 in gastric carcinoma cells is not studied. MATERIAL AND METHODS: To investigate the function of MAC30 in gastric carcinoma, we used RNA silencing technology to knock down the expression of MAC30 in gastric cancer cells BGC-823 and AGS. Real-time quantitative PCR and Western blot were used to analyze the mRNA level and the related protein expression. The localization of MAC30 and lamellipodia was observed by immunofluorescence. The biological phenotypes of gastric cells were examined by cell proliferation assay, cell cycle analysis, apoptosis assay, cell migration and invasion assay. RESULTS: We found that down-regulation of MAC30 expression efficiently inhibited the proliferation of gastric cancer cells. Furthermore, the mobility of gastric cancer cells was also inhibited by down-regulation of MAC30. Moreover, we found that MAC30 knockdown inhibited AKT phosphorylation and reduced the expression of cyclinB1 and WAVE2. CONCLUSION: To our knowledge, this is the first report investigating the effect of MAC30 on growth, cell cycle, migration, and invasion in gastric carcinoma cells via suppressing AKT signaling pathway. MAC30 may be a potential therapeutic target for treatment of gastric carcinoma.


Assuntos
Movimento Celular , Regulação para Baixo , Proteínas de Membrana/deficiência , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...