Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(3): 1517-1522, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33481612

RESUMO

Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other. This interaction is controllable by electrically tailoring the overlap between electronic wave functions in quantum dot systems, as long as they occupy neighboring dots. An alternative route is the exploration of superexchange-the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots. We experimentally demonstrate direct exchange coupling and provide evidence for second neighbor mediated superexchange in a linear array of three single-electron spin qubits in silicon, inferred from the electron spin resonance frequency spectra. We confirm theoretically, through atomistic modeling, that the device geometry only allows for sizable direct exchange coupling for neighboring dots, while next-nearest neighbor coupling cannot stem from the vanishingly small tail of the electronic wave function of the remote dots, and is only possible if mediated.

2.
Nat Nanotechnol ; 15(1): 13-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31819245

RESUMO

Single nuclear spins in the solid state are a potential future platform for quantum computing1-3, because they possess long coherence times4-6 and offer excellent controllability7. Measurements can be performed via localized electrons, such as those in single atom dopants8,9 or crystal defects10-12. However, establishing long-range interactions between multiple dopants or defects is challenging13,14. Conversely, in lithographically defined quantum dots, tunable interdot electron tunnelling allows direct coupling of electron spin-based qubits in neighbouring dots15-20. Moreover, the compatibility with semiconductor fabrication techniques21 may allow for scaling to large numbers of qubits in the future. Unfortunately, hyperfine interactions are typically too weak to address single nuclei. Here we show that for electrons in silicon metal-oxide-semiconductor quantum dots the hyperfine interaction is sufficient to initialize, read out and control single 29Si nuclear spins. This approach combines the long coherence times of nuclear spins with the flexibility and scalability of quantum dot systems. We demonstrate high-fidelity projective readout and control of the nuclear spin qubit, as well as entanglement between the nuclear and electron spins. Crucially, we find that both the nuclear spin and electron spin retain their coherence while moving the electron between quantum dots. Hence we envision long-range nuclear-nuclear entanglement via electron shuttling3. Our results establish nuclear spins in quantum dots as a powerful new resource for quantum processing.

3.
Phys Rev B ; 95(7)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29354794

RESUMO

The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...