Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(18): 21331-21337, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929825

RESUMO

Extremely high temperature in a chip will severely affect the normal operation of electronic equipment; however, the traditional air conditioning cooling technology is unsuitable for integrated circuit cooling. It is necessary to develop convenient and high-efficiency cooling techniques. In this paper, PbHfO3 antiferroelectric (PHO AFE) film was fabricated by a sol-gel method and was first found to be a promising electrocaloric (EC) material with high temperature change (ΔT ∼ -7.7 K) and acceptable EC strength (|ΔT/ΔE| ∼ 0.023 K cm kV-1) at room temperature. In addition to the negative EC effect (ECE), a large positive ECE can be observed at high temperature. The outstanding ECEs and their combination will make the PHO film one of the potential candidates for next-generation solid-state refrigeration. To understand the underlying physical mechanism for positive and negative ECEs in the PHO AFE film, a modified Ginzburg-Landau-Devonshire free-energy theory is adopted.

2.
Sci Rep ; 8(1): 396, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321638

RESUMO

The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm3 and 91.2%, respectively.

3.
Sci Rep ; 6: 31960, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628266

RESUMO

The behavior of ferroelectric domain under applied electric field is very sensitive to point defects, which can lead to high temperature dielectric relaxation behaviors. In this work, the phases, dielectric properties and ferroelectric switching behavior of strontium lead titanate ceramics were investigated. The structural characterization is confirmed by X-ray diffraction. The high dielectric tunability and high figure of merit of ceramics, especially Sr0.7Pb0.3TiO3 (SPT), imply that SPT ceramics are promising materials for tunable capacitor applications. Oxygen vacancies induced dielectric relaxation phenomenon is observed. Pinched shape hysteresis loops appeared in low temperature, low electric field or high frequency, whereas these pinched hysteresis loops also can become normal by rising temperature, enhancing electric field or lowering frequency. The pinning and depinning effect can be ascribed to the interaction between oxygen vacancies and domain switching. A qualitative model and a quantitative model are used to explain this phenomenon. Besides, polarization and oxygen treated experiment can exert an enormous influence on pinning effect and the machanisms are also discussed in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...