Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37027717

RESUMO

The registration of unitary-modality geometric data has been successfully explored over past decades. However, existing approaches typically struggle to handle cross-modality data due to the intrinsic difference between different models. To address this problem, in this paper, we formulate the cross-modality registration problem as a consistent clustering process. First, we study the structure similarity between different modalities based on an adaptive fuzzy shape clustering, from which a coarse alignment is successfully operated. Then, we optimize the result using fuzzy clustering consistently, in which the source and target models are formulated as clustering memberships and centroids, respectively. This optimization casts new insight into point set registration, and substantially improves the robustness against outliers. Additionally, we investigate the effect of fuzzier in fuzzy clustering on the cross-modality registration problem, from which we theoretically prove that the classical Iterative Closest Point (ICP) algorithm is a special case of our newly defined objective function. Comprehensive experiments and analysis are conducted on both synthetic and real-world cross-modality datasets. Qualitative and quantitative results demonstrate that our method outperforms state-of-the-art approaches with higher accuracy and robustness. Our code is publicly available at https://github.com/zikai1/CrossModReg.

2.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765523

RESUMO

In progressing the use of big data in health systems, standardised nomenclature is required to enable data pooling and analyses. In many radiotherapy planning systems and their data archives, target volumes (TV) and organ-at-risk (OAR) structure nomenclature has not been standardised. Machine learning (ML) has been utilised to standardise volumes nomenclature in retrospective datasets. However, only subsets of the structures have been targeted. Within this paper, we proposed a new approach for standardising all the structures nomenclature by using multi-modal artificial neural networks. A cohort consisting of 1613 breast cancer patients treated with radiotherapy was identified from Liverpool & Macarthur Cancer Therapy Centres, NSW, Australia. Four types of volume characteristics were generated to represent each target and OAR volume: textual features, geometric features, dosimetry features, and imaging data. Five datasets were created from the original cohort, the first four represented different subsets of volumes and the last one represented the whole list of volumes. For each dataset, 15 sets of combinations of features were generated to investigate the effect of using different characteristics on the standardisation performance. The best model reported 99.416% classification accuracy over the hold-out sample when used to standardise all the nomenclatures in a breast cancer radiotherapy plan into 21 classes. Our results showed that ML based automation methods can be used for standardising naming conventions in a radiotherapy plan taking into consideration the inclusion of multiple modalities to better represent each volume.

3.
IEEE Trans Cybern ; 53(11): 6776-6787, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044511

RESUMO

Automatic tumor or lesion segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because, although the human visual system can detect symmetries in 2-D images effectively, regular CNNs can only exploit translation invariance, overlooking further inherent symmetries existing in medical images, such as rotations and reflections. To solve this problem, we propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations. First, kernel-based equivariant operations are devised on each orientation, which allows it to effectively address the gaps of learning symmetries in existing approaches. Then, to keep segmentation networks globally equivariant, we design distinctive group layers with layer-wise symmetry constraints. Finally, based on our novel framework, extensive experiments conducted on real-world clinical data demonstrate that a group equivariant Res-UNet (called GER-UNet) outperforms its regular CNN-based counterpart and the state-of-the-art segmentation methods in the tasks of hepatic tumor segmentation, COVID-19 lung infection segmentation, and retinal vessel detection. More importantly, the newly built GER-UNet also shows potential in reducing the sample complexity and the redundancy of filters, upgrading current segmentation CNNs, and delineating organs on other medical imaging modalities.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico por imagem , Redes Neurais de Computação , Diagnóstico por Computador , Processamento de Imagem Assistida por Computador/métodos
4.
IEEE Trans Image Process ; 26(7): 3261-3276, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28436871

RESUMO

We propose a systematic approach for registering cross-source point clouds that come from different kinds of sensors. This task is especially challenging due to the presence of significant missing data, large variations in point density, scale difference, large proportion of noise, and outliers. The robustness of the method is attributed to the extraction of macro and micro structures. Macro structure is the overall structure that maintains similar geometric layout in cross-source point clouds. Micro structure is the element (e.g., local segment) being used to build the macro structure. We use graph to organize these structures and convert the registration into graph matching. With a novel proposed descriptor, we conduct the graph matching in a discriminative feature space. The graph matching problem is solved by an improved graph matching solution, which considers global geometrical constraints. Robust cross source registration results are obtained by incorporating graph matching outcome with RANSAC and ICP refinements. Compared with eight state-of-the-art registration algorithms, the proposed method invariably outperforms on Pisa Cathedral and other challenging cases. In order to compare quantitatively, we propose two challenging cross-source data sets and conduct comparative experiments on more than 27 cases, and the results show we obtain much better performance than other methods. The proposed method also shows high accuracy in same-source data sets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...