Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459932

RESUMO

Urban greenspace (UGS) is recognized to confer significant societal benefits, but few studies explored the microbial communities and antibiotic resistance genes (ARGs) from different urban greenspace types. Here, we collected leaf and soil samples from forest, greenbelt, and parkland to analyze microbial community assembly and ARG profile. For phyllosphere fungal community, the α-diversity was higher in forest, compared to those in greenbelt and parkland. Moreover, urban greenspace types altered the community assembly. Stochastic processes had a greater effect on phyllosphere fungal community in greenbelt and parkland, while in forest they were dominated by deterministic processes. In contrast, no significant differences in bacterial community diversity, community assembly were observed between the samples collected from different urban greenspace types. A total of 153 ARGs and mobile genetic elements (MGEs) were detected in phyllosphere and soil with resistance to the majority classes of antibiotics commonly applied to humans and animals. Structural equation model further revealed that a direct association between greenspace type and ARGs in the phyllosphere even after considering the effects of all other factors simultaneously. Our findings provide new insights into the microbial communities and antibiotic resistome of urban greenspaces and the potential risk linked with human health.


Assuntos
Antibacterianos , Microbiota , Animais , Humanos , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Parques Recreativos , Microbiologia do Solo
2.
Sci Total Environ ; 866: 161322, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603616

RESUMO

The plastisphere is a new ecological niche. Compared to the surrounding water, microbial community composition associated with the plastisphere is known to differ with functional consequences. Here, this study characterized the bacterial and fungal communities associated with four types of plastisphere (polyethylene, polystyrene, polypropylene and polyvinyl chloride) in an estuarine habitat; assessed ecological functions including carbon, nitrogen, phosphorus and sulfur cycling, and determined the presence of antibiotic resistance genes (ARGs) and human pathogens. Stochastic processes dominated the community assembly of microorganisms on the plastisphere. Several functional genera related to nutrient cycling were enriched in the plastisphere. Compared to surrounding water and other plastisphere, the abundances of carbon, nitrogen and phosphorus cycling genes (cdaR, nosZ and chpy etc.) and ARGs (aadA2-1, cfa and catB8 etc.) were significantly increased in polyvinyl chloride plastisphere. In contrast, the polystyrene plastisphere was the preferred substrate for several pathogens being enriched with for example, Giardia lamblia 18S rRNA, Klebsiella pneumoniae phoE and Legionella spp. 23S rRNA. Overall, this study showed that different plastisphere had different effects on ecological functions and health risk in estuaries and emphasizes the importance of controlling plastic pollution in estuaries. Data from this study support global policy drivers that seek to reduce plastic pollution and offer insights into ecological functions in a new ecological niche of the Anthropocene.


Assuntos
Microbiota , Poliestirenos , Humanos , Cloreto de Polivinila , Plásticos , Água , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Nitrogênio , Fósforo
3.
Environ Int ; 171: 107723, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584423

RESUMO

Protists are a trophically diverse and biogeochemically significant component of water environments and are widely reported as hosts of bacteria. However, the potential role of protists in wastewater treatment plants (WWTPs) as reservoirs for human pathogens does not appear to have received adequate attention. Here, a combination of fluorescence-activated cell sorting and Illumina sequencing was applied to characterize the dynamics of the internalized bacterial community of the enriched protists from the influents and effluents of five WWTPs. The results showed that Proteobacteria (mainly Betaproteobacteria) dominate the intracellular bacterial communities of protists in both influents and effluents of WWTPs, accounting for 72.6% of the total intracellular bacterial communities. The most frequently detected genus was Sulfuricurvum in the influent samples, Chryseobacterium and Pseudomonas were most prevalent in the effluent samples. Compared with the influents, a more diverse and abundant intracellular bacterial community was observed in the effluents. Moreover, the potential intracellular bacterial pathogens were 26 times higher in effluents than in influents, with Pseudomonas fluorescens and Pseudomonas putida significantly enriched in effluents. This work provides insights into the dynamics of bacterial communities and potential pathogens harbored by protists in the influents and effluents from WWTPs, contributing to the improved evaluation of biosafety in WWTPs.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Bactérias/genética
4.
Sci Total Environ ; 848: 157821, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35931174

RESUMO

With the increasing use of antibiotics, their ecological impacts have received widespread attention. However, research on the toxicity of quinolone antibiotics is still limited, especially regarding the oxidative stress and phyllosphere of plants. In this study, the toxic effects of enrofloxacin, norfloxacin, and levofloxacin on Arabidopsis thaliana and their underlying mechanisms were investigated. The toxicity of the three quinolone antibiotics decreased in the following order: enrofloxacin > norfloxacin > levofloxacin. Physiological cellular changes, such as plasmolysis and chloroplast swelling, were observed using electron microscopy. Photosynthetic efficiency was inhibited with a decline in the effective photochemical quantum yield of photosystem II (Y(II)) and non-photochemical quenching (NPQ), indicating that quinolone antibiotics might reduce light energy conversion efficiency and excess light energy dissipation. Oxidative stress occurred in A. thaliana after quinolone antibiotic treatment, with an increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. High ROS levels stimulated the over-expression of superoxide-responsive genes for self-protection. Structural equation modeling (SEM) analysis showed that photosynthesis inhibition and cellular damage caused by oxidative stress were critical factors for growth inhibition, suggesting that the antioxidant response activated by ROS might be a potential mechanism. Furthermore, the diversity of the phyllospheric microbial communities decreased after enrofloxacin exposure. Additionally, specific microbes were preferentially recruited to the phyllosphere because of the higher ROS levels.


Assuntos
Arabidopsis , Microbiota , Antibacterianos/toxicidade , Antioxidantes/metabolismo , Clorofila , Enrofloxacina , Levofloxacino , Malondialdeído , Norfloxacino , Estresse Oxidativo , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio , Superóxidos/farmacologia
5.
Sci Total Environ ; 820: 153170, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35051473

RESUMO

Spread of antibiotic resistance or the presence of antibiotic resistance genes (ARGs) in pathogens is a globally recognized threat to human health. Numerous studies have shown that application of organic fertilizers may increase the risk of ARGs, however, the risk of resistance genes associated with biofertilizers is largely unknown. To investigate whether biofertilizer application introduces ARGs to the soil, we used high-throughput quantitative polymerization chain reaction (HT-qPCR) to explore the effect of biofertilizer application over three years on soil ARGs in three orchards with different locations in China. Redundancy analysis showed specific and significant differences in the beta diversity of soil bacteria and fungi between treatments (fertilizer vs. no fertilizer). One-way ANOVA analysis revealed findings of the main driver of the significant difference in microbial community structure between fertilizer and control treatment was the change in soil properties following the application of biofertilizer. A total of 139 ARGs and 27 MGEs (mobile genetic elements), and 46 ARGs and 6 MGEs from 11 major taxa were detected in biofertilizer and soil samples, respectively. Only the samples from Guangxi had significant differences in the detected number of ARGs and MGEs between fertilization and control. Through structural equation modeling (SEM), we found that soil properties indirectly affected ARGs by shaping bacterial diversity, while bacterial abundance directly affected ARGs. Biofertilizer application did not significantly alter the relative abundance of ARGs in soil due to the complexity of the soil environment and competition between exogenous and native microorganisms. This study provided new insights into the spread of the antibiotic resistome of the soil through biofertilizer applications.


Assuntos
Microbiologia do Solo , Solo , Antibacterianos/análise , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Esterco/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...