Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Exp Med Biol ; 1445: 47-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967749

RESUMO

Traditionally, immunoglobulin (Ig) expression has been attributed solely to B cells/plasma cells with well-documented and accepted regulatory mechanisms governing Ig expression in B cells. Ig transcription is tightly controlled by a series of transcription factors. However, increasing evidence has recently demonstrated that Ig is not only produced by B cell lineages but also by various types of non-B cells (non-B-Ig). Under physiological conditions, non-B-Ig not only exhibits antibody activity but also regulates cellular biological activities (such as promoting cell proliferation, adhesion, and cytoskeleton protein activity). In pathological conditions, non-B-Ig is implicated in the development of various diseases including tumour, kidney disease, and other immune-related disorders. The mechanisms underline Ig gene rearrangement and transcriptional regulation of Ig genes in non-B cells are not fully understood. However, existing evidence suggests that these mechanisms in non-B cells differ from those in B cells. For instance, non-B-Ig gene rearrangement occurs in an RAG-independent manner; and Oct-1 and Oct-4, rather than Oct-2, are required for the transcriptional regulation of non-B derived Igs. In this chapter, we will describe and compare the mechanisms of gene rearrangement and expression regulation between B-Ig and non-B-Ig.


Assuntos
Regulação da Expressão Gênica , Imunoglobulinas , Transcrição Gênica , Humanos , Animais , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Rearranjo Gênico , Linfócitos B/metabolismo , Linfócitos B/imunologia
2.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967758

RESUMO

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/patologia , Glicosilação , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo
3.
Nutr Diabetes ; 14(1): 48, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951151

RESUMO

BACKGROUND: This study aimed to assess whether the Haptoglobin (Hp) genotype influences the relationship between hemoglobin (Hb) levels and the development of gestational diabetes mellitus (GDM). Additionally, it sought to evaluate the interaction and joint association of Hb levels and Hp genotype with GDM risk. METHODS: This retrospective study involved 358 women with GDM and 1324 women with normal glucose tolerance (NGT). Peripheral blood leukocytes were collected from 360 individuals at 14-16 weeks' gestation for Hp genotyping. GDM was diagnosed between 24-28 weeks' gestation. Interactive moderating effect, joint analysis, and mediation analysis were performed to evaluate the crosslink of Hb levels and Hp genotype with GDM risk. RESULTS: Women who developed GDM had significantly higher Hb levels throughout pregnancy compared to those with NGT. Increase first-trimester Hb concentration was associated with a progressive rise in GDM incidence, glucose levels, glycosylated hemoglobin levels, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) values, cesarean delivery rates, and composite neonatal outcomes. Spline regression showed a significant linear association of GDM incidence with continuous first-trimester Hb level when the latter exceeded 122 g/L. Increased first-trimester Hb concentration was an independent risk factor for GDM development after adjusting for potential confounding factors in both the overall population and a matched case-control group. The Hp2-2 genotype was more prevalent among pregnant women with GDM when first-trimester Hb exceeded 122 g/L. Significant multiplicative and additive interactions were identified between Hb levels and Hp genotype for GDM risk, adjusted for age and pre-pregnancy BMI. The odds ratio (OR) for GDM development increased incrementally when stratified by Hb levels and Hp genotype. Moreover, first-trimester Hb level partially mediated the association between Hp genotype and GDM risk. CONCLUSION: Increased first-trimester Hb levels were closely associated with the development of GDM and adverse pregnancy outcomes, with this association moderated by the Hp2-2 genotype.


Assuntos
Diabetes Gestacional , Genótipo , Haptoglobinas , Hemoglobinas , Primeiro Trimestre da Gravidez , Humanos , Feminino , Gravidez , Diabetes Gestacional/genética , Diabetes Gestacional/sangue , Diabetes Gestacional/epidemiologia , Haptoglobinas/genética , Estudos Retrospectivos , Adulto , Hemoglobinas/análise , China/epidemiologia , Fatores de Risco , Povo Asiático/genética , Hemoglobinas Glicadas/análise , Glicemia/análise , Glicemia/metabolismo , Resistência à Insulina/genética , População do Leste Asiático
4.
Eur Arch Otorhinolaryngol ; 281(6): 3143-3156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507078

RESUMO

PURPOSE: To look at the diagnostic value of the CELSR receptor 3 (CELSR3) gene in head and neck squamous cell carcinoma (HNSCC) and its effect on tumor immune invasion, which is important for enhancing HNSCC treatment. METHODS: Several bioinformatics tools were employed to investigate CELSR3's putative oncogenic pathway in HNSCC, and datasets from The Tumor Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Gene Expression Profile Interaction Analysis (GEPIA) and LinkedOmics were extracted and evaluated. CELSR3 has been linked to tumor immune cell infiltration, immunological checkpoints, and immune-related genes. CELSR3's putative roles were investigated using Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and pathway enrichment analysis. The expression level of CELSR3 in HNSCC tissues and cells was detected by RT-qPCR. The effects of CELSR3 on proliferation of HNSCC cells were detected by CCK-8 assay. RESULTS: CELSR3 was shown to be expressed differently in different types of cancer and normal tissues. CELSR3 gene expression was linked to pN-stage and pM-stage. Patients with high CELSR3 expression also have a well prognosis. CELSR3 expression was found to be an independent predictive factor for HNSCC in both univariate and multivariate Cox regression analyses. We discovered the functional network of CELSR3 in HNSCC using GO and KEGG analysis. CELSR3 expression levels were found to be favorably associated with immune cell infiltration levels. Furthermore, CELSR3 expression levels were significantly correlated with the expression levels of many immune molecules, such as MHC genes, immune activation genes, chemokine receptors, and chemokines. CELSR3 is highly expressed in HNSCC tissues and cells. CELSR3 overexpression significantly inhibited the proliferation of HNSCC cells. CELSR3 expression may affect the immune microenvironment and, as a result, the prognosis of HNSCC. CONCLUSION: CELSR3 expression is elevated in HNSCC tumor tissues, and high CELSR3 expression is associated with well prognosis, which inhibited the proliferation of NHSCC cells. CELSR3 has the potential to influence tumor formation by controlling tumor-infiltrating cells in the tumor microenvironment (TME). As a result, CELSR3 may have diagnostic significance in HNSCC.


Assuntos
Biomarcadores Tumorais , Caderinas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Caderinas/genética , Caderinas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
5.
BMJ Open Respir Res ; 11(1)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460976

RESUMO

PURPOSE: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is the primary cause of death in patients with IPF, characterised by diffuse, bilateral ground-glass opacification on high-resolution CT (HRCT). This study proposes a three-dimensional (3D)-based deep learning algorithm for classifying AE-IPF using HRCT images. MATERIALS AND METHODS: A novel 3D-based deep learning algorithm, SlowFast, was developed by applying a database of 306 HRCT scans obtained from two centres. The scans were divided into four separate subsets (training set, n=105; internal validation set, n=26; temporal test set 1, n=79; and geographical test set 2, n=96). The final training data set consisted of 1050 samples with 33 600 images for algorithm training. Algorithm performance was evaluated using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve and weighted κ coefficient. RESULTS: The accuracy of the algorithm in classifying AE-IPF on the test sets 1 and 2 was 93.9% and 86.5%, respectively. Interobserver agreements between the algorithm and the majority opinion of the radiologists were good (κw=0.90 for test set 1 and κw=0.73 for test set 2, respectively). The ROC accuracy of the algorithm for classifying AE-IPF on the test sets 1 and 2 was 0.96 and 0.92, respectively. The algorithm performance was superior to visual analysis in accurately diagnosing radiological findings. Furthermore, the algorithm's categorisation was a significant predictor of IPF progression. CONCLUSIONS: The deep learning algorithm provides high auxiliary diagnostic efficiency in patients with AE-IPF and may serve as a useful clinical aid for diagnosis.


Assuntos
Aprendizado Profundo , Pneumonias Intersticiais Idiopáticas , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Curva ROC
6.
Biomark Med ; 18(3): 115-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436264

RESUMO

Aims: This study investigated the nonlinear associations between neutrophil-to-lymphocyte (NLR)/platelet-to-lymphocyte (PLR) and recovery rates in sudden sensorineural hearing loss (SSNHL). Methods: Total of 244 SSNHL patients were included. The primary outcome was recovery rate. Results: A nonlinear association was detected between NLR and recovery rate using the LOWESS method, with a knot of 3. Patients with NLR ≥3 had a higher recovery rate than NLR <3. Using the linear-spline function, NLR was significantly associated with high recovery rate when NLR was <3. However, when NLR was ≥3, this association became nonsignificant. The trend test showed a similar result. PLR was not associated with recovery rate. Conclusion: The association between NLR and recovery rate is nonlinear, with a knot of around three. PLR is not associated with recovery rate.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Humanos , Neutrófilos , Prognóstico , Contagem de Linfócitos , Estudos Retrospectivos , Linfócitos , Plaquetas
7.
Artigo em Inglês | MEDLINE | ID: mdl-38447057

RESUMO

Kidney aging accelerates the progression of various acute and chronic kidney diseases and can also induce pathological changes in other organs throughout the body. Circular RNAs (circRNAs) have been demonstrated to play a vital role in aging and age-related diseases. However, biological functions and the underlying molecular mechanism of circRNAs in kidney aging remain largely unclear. Uncovering the functions of circRNAs in kidney aging and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human aging. Here, we report the important role of circVmn2r1 in the progression of kidney aging. We found that circVmn2r1 was one of the top expressed circRNAs in mouse kidney by RNA sequencing and was significantly upregulated in 24-month-old mouse kidney compared to 3-month-old. More importantly, we demonstrated that overexpression of circVmn2r1 promoted kidney aging in senescence-accelerated mouse prone 8 mice. Cellular assays with mouse kidney tubular epithelium (TCMK-1) cells under both gain-of-function and loss-of-function conditions demonstrated that circVmn2r1 inhibited proliferation and promoted senescence, whereas miR-223-3p counteracted these effects. Mechanistic analysis demonstrated that circVmn2r1 acted as a miR-223-3p sponge to relieve the repressive effect of miR-223-3p on its target NLRP3, which we proved could inhibit proliferation and promote senescence of TCMK-1 cells. Our results indicate that circVmn2r1 promotes kidney aging through acting as a miR-223-3p sponge, consequently upregulating NLRP3 expression, and can be a valuable diagnostic marker and an important therapeutic target for kidney aging.


Assuntos
Envelhecimento , Rim , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Circular , Animais , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/fisiologia , Senescência Celular/genética , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Circular/genética , RNA Circular/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
8.
Front Immunol ; 15: 1275064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370408

RESUMO

Introduction: Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung dysfunction due to excessive collagen production and tissue scarring. Despite recent advancements, the molecular mechanisms remain unclear. Methods: RNA sequencing identified 475 differentially expressed genes (DEGs) in the TGF-ß1-induced primary lung fibrosis model. Gene expression chips GSE101286 and GSE110147 from NCBI gene expression omnibus (GEO) database were analyzed using GEO2R, revealing 94 DEGs in IPF lung tissue samples. The gene ontology (GO) and pathway enrichment, Protein-protein interaction (PPI) network construction, and Maximal Clique Centrality (MCC) scoring were performed. Experimental validation included RT-qPCR, Immunohistochemistry (IHC), and Western Blot, with siRNA used for gene knockdown. A co-expression network was constructed by GeneMANIA. Results: GO enrichment highlighted significant enrichment of DEGs in TGF-ß cellular response, connective tissue development, extracellular matrix components, and signaling pathways such as the AGE-RAGE signaling pathway and ECM-receptor interaction. PPI network analysis identified hub genes, including FN1, COL1A1, POSTN, KIF11, and ECT2. CALD1 (Caldesmon 1), CDH2 (Cadherin 2), and POSTN (Periostin) were identified as dysregulated hub genes in both the RNA sequencing and GEO datasets. Validation experiments confirmed the upregulation of CALD1, CDH2, and POSTN in TGF-ß1-treated fibroblasts and IPF lung tissue samples. IHC experiments probed tissue-level expression patterns of these three molecules. Knockdown of CALD1, CDH2, and POSTN attenuated the expression of fibrotic markers (collagen I and α-SMA) in response to TGF-ß1 stimulation in primary fibroblasts. Co-expression analysis revealed interactions between hub genes and predicted genes involved in actin cytoskeleton regulation and cell-cell junction organization. Conclusions: CALD1, CDH2, and POSTN, identified as potential contributors to pulmonary fibrosis, present promising therapeutic targets for IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Humanos , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
9.
Diabetologia ; 67(4): 724-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216792

RESUMO

AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.


Assuntos
Diabetes Mellitus Tipo 2 , Dioxigenases , Resistência à Insulina , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenases/metabolismo , Glucose/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Reprod Biol Endocrinol ; 22(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167145

RESUMO

BACKGROUND: Chronic inflammation plays a vital role in the development of gestational diabetes mellitus (GDM). Studies in mouse models show that neutrophil serine proteases (NSPs), neutrophil elastase (NE) and proteinase-3 (PR3) are important drivers of chronic inflammation with consequent metabolic disturbances. This study evaluated the association of NE and PR3 with GDM development and adverse fetal outcomes. METHOD(S): This was a prospective cohort study. Serum PR3 and NE concentration was measured in all enrolled pregnant women in the first and the second trimester to determine the connection between NSPs and GDM and adverse fetal outcomes. Logistic regression, spline regression and linear regression analyses were applied to investigate the association of NE or PR3 with GDM development and adverse fetal outcomes. The concentration of NE and PR3 in placental biopsies was evaluated by semi-quantitative analysis of immunohistochemistry staining. RESULT(S): NE or PR3 concentration in the first trimester, rather than the second, increased more significantly in women with GDM than in those without, regardless of pre-pregnancy body mass index and age. There was a stepwise increase in GDM occurrence as well as comprehensive adverse fetal outcomes across tertiles of NE and PR3. NE and PR3 were positively associated with neutrophil count, pre-pregnancy BMI, plasma glucose level and newborn weight. Logistic regression revealed NE or PR3 to be independent risk factors for the development of GDM and comprehensive adverse fetal outcomes. Spline regression showed a significant increased risk of GDM occurrence and comprehensive adverse fetal outcomes when serum NE concentration exceeded 417.60 ng/mL and a similar result for PR3 and GDM occurrence when the latter exceeded 88.52 ng/mL. Immunohistochemistry data confirmed that enriched NE and PR3 content in placental tissue may have contributed to the development of GDM. CONCLUSION(S): This work demonstrates that excessive first-trimester NE and PR3 increase the risk of GDM development and comprehensive adverse fetal outcomes.


Assuntos
Diabetes Gestacional , Recém-Nascido , Animais , Camundongos , Gravidez , Feminino , Humanos , Diabetes Gestacional/epidemiologia , Primeiro Trimestre da Gravidez , Mieloblastina , Elastase de Leucócito , Estudos Prospectivos , Placenta , Inflamação/complicações , Índice de Massa Corporal
11.
Eur Arch Otorhinolaryngol ; 281(1): 427-440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688682

RESUMO

PURPOSE: To investigate Src-like adaptor 2 gene (SLA2) expression in head and neck squamous cell carcinoma (HNSCC), its potential prognostic value, and its effect on immune cell infiltration. METHODS: Through a variety of bioinformatics analyses, we extracted and analyzed data sets from the Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), and Gene Expression Profile Interaction Analysis (GEPIA) to analyze the correlation between SLA2 and the prognosis, immune checkpoint, tumor microenvironment (TME) and immune cell infiltration of HNSCC, and to explore its potential oncogenic mechanism. To further explore the potential role of SLA2 in HNSCC by Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: SLA2 messenger ribonucleic acid (mRNA) levels were increased in HNSCC tumor tissues compared with normal tissues. In addition, we found that SLA2 may be an independent prognostic factor for HNSCC, and high SLA2 expression is associated with favorable prognosis in HNSCC. SLA2 expression was positively correlated with B cells, cluster of differentiation 8-positive T cells (CD8 + T cells), cluster of differentiation 4-positive T cells (CD4 + T cells), macrophages, neutrophil and dendritic cells infiltration. SLA2 has also been shown to co-express immune-related genes and immune checkpoints. Significant GO term analysis by Gene Set Enrichment Analysis (GSEA) indicated that genes correlated with SLA2 were located mainly in the side of membrane, receptor complex, secretory granule membrane, endocytic vesicle, membrane region, and endosome membrane, where they were involved in leukocyte cell-cell adhesion, response to interferon-gamma, and regulation of immune effector process. These related genes also served as antigen binding, cytokine receptor activity, phosphatidylinositol 3-kinase activity, peptide receptor activity, Src homology domain 3 (SH3) domain binding, and cytokine receptor binding. KEGG pathway analysis demonstrated that these genes related to SLA2 were mainly enriched in signal pathways, such as hematopoietic cell lineage, cell adhesion molecules (CAMs), natural killer cell mediated cytotoxicity, measles, and chemokine signaling pathway. CONCLUSIONS: SLA2 is increased in HNSCC, and high SLA2 expression is associated with favorable prognosis. SLA2 may affect tumor development by regulating tumor infiltrating cells in TME. SLA2 may be a potential target for immunotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Receptores de Citocinas
12.
J Clin Endocrinol Metab ; 109(2): 333-343, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37708356

RESUMO

OBJECTIVE: Placenta-derived inflammation plays a vital role in the pathophysiology of gestational diabetes mellitus (GDM). IL-32 is a novel pro-inflammatory cytokine and metabolic regulator involved in the development of metabolic disease. We investigated the effect of IL-32 in GDM. MATERIALS AND METHODS: First-trimester C-reactive protein (CRP) level was monitored in a case-control study of 186 women with GDM and 186 women without. Placental tissue was lysed and analyzed by high-resolution liquid chromatography-tandem mass spectrometry. Circulating level of inflammatory cytokines IL-32, IL-6, and TNF-α were measured by ELISA kits. The expression of placenta-derived macrophages, inflammatory cytokines, and related pathway proteins were assessed by reverse transcriptase-quantitative PCR, western blot, immunohistochemistry, or immunofluorescence. RESULTS: First-trimester CRP level in peripheral blood was closely associated with glucose and insulin resistance index and was an independent correlation with the development of GDM. High-resolution liquid chromatography-tandem mass spectrometry revealed that placenta-derived CRP expression was dramatically elevated in women with GDM. Interestingly, the expression of placenta-derived IL-32 was also increased and located in the macrophages of placental tissue. Meanwhile, the expression of IL-6, TNF-α, and p-p38 were up-regulated in the placental tissues with GDM. Either IL-6 or TNF-α was colocated with IL-32 in the placental tissue. Importantly, circulating IL-32 throughout pregnancy was increased in GDM and was related to placental-derived IL-32 expression, circulating IL-6, and TNF-α, glucose and insulin resistance index. CONCLUSION: Increased circulating IL-32 throughout pregnancy was closely associated with placenta macrophage-derived IL-32 expression and GDM. First trimester IL-32 level in peripheral blood may serve to predict the development of GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Gravidez , Feminino , Humanos , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Estudos de Casos e Controles , Placenta/metabolismo , Citocinas , Insulina , Glucose
13.
Eur Respir J ; 63(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061785

RESUMO

BACKGROUND: Accelerated biological ageing has been associated with an increased risk of several chronic respiratory diseases. However, the associations between phenotypic age, a new biological age indicator based on clinical chemistry biomarkers, and common chronic respiratory diseases have not been evaluated. METHODS: We analysed data from 308 592 participants at baseline in the UK Biobank. The phenotypic age was calculated from chronological age and nine clinical chemistry biomarkers, including albumin, alkaline phosphatase, creatinine, glucose, C-reactive protein, lymphocyte percent, mean cell volume, red cell distribution width and white blood cell count. Furthermore, phenotypic age acceleration (PhenoAgeAccel) was calculated by regressing phenotypic age on chronological age. The associations of PhenoAgeAccel with incident common chronic respiratory diseases and cross-sectional lung function were investigated. Moreover, we constructed polygenic risk scores and evaluated whether PhenoAgeAccel modified the effect of genetic susceptibility on chronic respiratory diseases and lung function. RESULTS: The results showed significant associations of PhenoAgeAccel with increased risk of idiopathic pulmonary fibrosis (IPF) (hazard ratio (HR) 1.52, 95% CI 1.45-1.59), COPD (HR 1.54, 95% CI 1.51-1.57) and asthma (HR 1.18, 95% CI 1.15-1.20) per 5-year increase and decreased lung function. There was an additive interaction between PhenoAgeAccel and the genetic risk for IPF and COPD. Participants with high genetic risk and who were biologically older had the highest risk of incident IPF (HR 5.24, 95% CI 3.91-7.02), COPD (HR 2.99, 95% CI 2.66-3.36) and asthma (HR 2.07, 95% CI 1.86-2.31). Mediation analysis indicated that PhenoAgeAccel could mediate 10∼20% of the associations between smoking and chronic respiratory diseases, while ∼10% of the associations between particulate matter with aerodynamic diameter <2.5 µm and the disorders were mediated by PhenoAgeAccel. CONCLUSION: PhenoAgeAccel was significantly associated with incident risk of common chronic respiratory diseases and decreased lung function and could serve as a novel clinical biomarker.


Assuntos
Asma , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Humanos , Incidência , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Estudos Transversais , Estudos Prospectivos , Asma/epidemiologia , Asma/genética , Envelhecimento/genética , Biomarcadores , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco
14.
ACS Appl Mater Interfaces ; 16(1): 1628-1637, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38130095

RESUMO

It is well known that the inferior film morphology and the excessive surface/interface defect states are two obstacles to achieving high electroluminescence performance of quasi-2D perovskite light-emitting diodes (PeLEDs). To solve these problems, ibuprofen was introduced as an additive in the quasi-2D perovskite emitting layer. More efficient photoluminescence is demonstrated. Further, optimized quasi-2D PeLEDs with a current efficiency of 55.93 cd/A are confirmed and 5.7-fold enhancement in device stability is obtained. The physical mechanism of the remarkable improvement is investigated by kinds of measurements. Three aspects should be counted into it. First, the introduction of ibuprofen can passivate defects, thus making the quasi-2D perovskite emitting layer more dense and homogeneous. The reason should be that the C═O functional group and C═C bond in the benzene ring in ibuprofen can coordinate the unsaturated Pb2+ perovskite emitting layer. Meanwhile, the related exciton harvesting process is investigated. The proportion of the crystalline phases (small n and large n phase) can be tuned to benefit the energy funneling process. Finally, the analysis of the current density and voltage curves of the hole-dominated devices and the electron-dominated devices is conducted by utilizing the space charge-limited current (SCLC) methods.

15.
Diabetes Res Clin Pract ; 206: 111014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977551

RESUMO

OBJECT: The highly conserved α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is the key enzyme that regulates the de novo NAD+ synthesis from tryptophan. NAD+ metabolism in diabetic cardiomyopathy (DCM) was not elucidated yet. METHODS: Mice were assigned to non-diabetic (NDM) group, streptozocin (STZ)-induced diabetic (DM) group, and nicotinamide (NAM) treated (DM + NAM) group. ACMSD mediated NAD+ metabolism were studied both in mice and patients with diabetes. RESULTS: NAD+ level was significantly lower in the heart of DM mice than that of the NDM group. Supplementation with NAM could partially increased myocardial capillary density and ameliorated myocardial fibrosis by increasing NAD+ level through salvage pathway. Compared with NDM mice, the expression of ACMSD in myocardial endothelial cells of DM mice was significantly increased. It was further confirmed that in endothelial cells, high glucose promoted the expression of ACMSD. Inhibition of ACMSD could increase de novo NAD+ synthesis and improve endothelial cell function by increasing Sirt1 activity. Targeted mass spectrometry analysis indicated increased ACMSD enzyme activity in diabetic patients, higher ACMSD activity increased risk of heart diastolic dysfunction. CONCLUSION: In summary, increased expression of ACMSD lead to impaired de novo NAD+ synthesis in diabetic heart. Inhibition of ACMSD could potentially improve DCM.


Assuntos
Carboxiliases , Cardiomiopatias Diabéticas , Animais , Humanos , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Células Endoteliais/metabolismo , NAD/metabolismo , Carboxiliases/antagonistas & inibidores , Carboxiliases/metabolismo
16.
Respir Res ; 24(1): 296, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007420

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico , Pulmão , Modelos Animais , Progressão da Doença
17.
Front Immunol ; 14: 1291379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022512

RESUMO

Understanding the determinants of host and tissue tropisms among parasites of veterinary and medical importance has long posed a substantial challenge. Among the seven species of Eimeria known to parasitize the chicken intestine, a wide variation in tissue tropisms has been observed. Prior research suggested that microneme protein (MIC) composed of microneme adhesive repeat (MAR) domain responsible for initial host cell recognition and attachment likely dictated the tissue tropism of Eimeria parasites. This study aimed to explore the roles of MICs and their associated MARs in conferring site-specific development of E. acervuline, E. maxima, and E. mitis within the host. Immunofluorescence assays revealed that MIC3 of E. acervuline (EaMIC3), MIC3 of E. maxima (EmMIC3), MIC3 of E. mitis (EmiMIC3), MAR3 of EaMIC3 (EaMIC3-MAR3), MAR2 of EmMIC3 (EmMIC3-MAR2), and MAR4 of EmiMIC3 (EmiMIC3-MAR4), exhibited binding capabilities to the specific intestinal tract where these parasites infect. In contrast, the invasion of sporozoites into host intestinal cells could be significantly inhibited by antibodies targeting EaMIC3, EmMIC3, EmiMIC3, EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4. Substitution experiments involving MAR domains highlighted the crucial roles of EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 in governing interactions with host ligands. Furthermore, animal experiments substantiated the significant contribution of EmiMIC3, EmiMIC3-MAR4, and their polyclonal antibodies in conferring protective immunity to Eimeria-affiliated birds. In summary, EaMIC3, EmMIC3, and EmiMIC3 are the underlying factors behind the diverse tissue tropisms exhibited by E. acervuline, E. maxima, and E. mitis, and EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 are the major determinants of MIC-mediated tissue tropism of each parasite. The results illuminated the molecular basis of the modes of action of Eimeria MICs, thereby facilitating an understanding and rationalization of the marked differences in tissue tropisms among E. acervuline, E. maxima, and E. mitis.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Micronema , Proteínas , Galinhas/parasitologia
18.
Front Immunol ; 14: 1195988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388737

RESUMO

Pulmonary alveolar proteinosis (PAP) is a rare pulmonary disorder that is characterized by the abnormal accumulation of surfactant within the alveoli. Alveolar macrophages (AMs) have been identified as playing a pivotal role in the pathogenesis of PAP. In most of PAP cases, the disease is triggered by impaired cholesterol clearance in AMs that depend on granulocyte-macrophage colony-stimulating factor (GM-CSF), resulting in defective alveolar surfactant clearance and disruption of pulmonary homeostasis. Currently, novel pathogenesis-based therapies are being developed that target the GM-CSF signaling, cholesterol homeostasis, and immune modulation of AMs. In this review, we summarize the origin and functional role of AMs in PAP, as well as the latest therapeutic strategies aimed at addressing this disease. Our goal is to provide new perspectives and insights into the pathogenesis of PAP, and thereby identify promising new treatments for this disease.


Assuntos
Proteinose Alveolar Pulmonar , Surfactantes Pulmonares , Humanos , Proteinose Alveolar Pulmonar/terapia , Macrófagos Alveolares , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Alvéolos Pulmonares , Surfactantes Pulmonares/uso terapêutico , Doenças Raras , Tensoativos
19.
Nutr Metab (Lond) ; 20(1): 29, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349836

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a major contributor to liver cirrhosis and hepatocellular carcinoma. There remains no effective pharmacological therapy. The hepatic lipid metabolism and fatty acid ß-oxidation are regulated by Perilipin5 (Plin5). However, it is yet unknown how Plin5 affects NASH and the molecular process. METHODS: High-fat, high-cholesterol and high-fructose (HFHC) diets were used to mimic the progression of NASH in wild type (WT) mice and Plin5 knockout (Plin5 KO) mice. The degree of ferroptosis was measured by detecting the expression of key genes of ferroptosis and the level of lipid peroxide. The degree of NASH was judged by observing the morphology of the liver, detecting the expression of inflammation and fibrosis related genes of liver damage. Plin5 was overexpressed in the liver of mice by tail vein injection of adenovirus, and the process of NASH was simulated by methionine choline deficiency (MCD) diet. The occurrence of ferroptosis and NASH was detected by the same detection method. Targeted lipidomics sequencing was used to detect the difference in free fatty acid expression in the WT Plin5 KO group. Finally, it was verified in cell experiments to further study the effect of free fatty acids on ferroptosis of hepatocytes. RESULTS: In various NASH models, hepatic Plin5 was dramatically reduced. Plin5 knockout (KO) worsened NASH-associated characteristics in mice given a high-fat/high-cholesterol (HFHC) diet, such as lipid accumulation, inflammation and hepatic fibrosis. It has been shown that ferroptosis is involved in NASH progression. We revealed that Plin5 KO in mice aggravated the degree of ferroptosis in NASH models. Conversely, overexpression of Plin5 significantly alleviated ferroptosis and further ameliorated progression of MCD-induced NASH. Analysis of livers obtained from HFHC diet-fed mice by targeted lipidomics revealed that 11-Dodecenoic acid was significantly decreased in Plin5 KO mice. Addition of 11-Dodecenoia acid to Plin5 knockdown hepatocytes effectively prevented ferroptosis. CONCLUSION: Our study demonstrates that Plin5 protects against NASH progression by increasing 11-Dodecenoic acid level and further inhibiting ferroptosis, suggesting that Plin5 has therapeutic potential as a target for the management of NASH.

20.
FASEB J ; 37(4): e22866, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929614

RESUMO

Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.


Assuntos
Diabetes Mellitus Experimental , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...