Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 260: 121907, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38878318

RESUMO

The combination of ozone (O3) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O3 and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O3/Fe(VI) system. Our findings showed that the hydroxyl radical (·OH) served as the predominant active species, responsible for an impressive 95.9 % of the oxidation activity against electron-deficient pollutants. Additional experiments demonstrated that the rapid production of neglected and really important superoxide radicals (·O2-) could facilitate the decomposition of O3 to generate ·OH and accelerate the reduction of Fe(VI) to Fe(V), reactivating O3 to produce ·OH anew. Intriguingly, as the reaction progressed, the initially depleted Fe(VI) was partially regenerated, stabilizing at over 50 %, highlighting the significant potential of this combined system. Moreover, this combined system could achieve a high mineralization efficiency of 80.4 % in treating actual coking wastewater, complemented by extensive toxicity assessments using Escherichia coli, wheat seeds, and zebrafish embryos, showcasing its robust application potential. This study revisits and amends previous research on the O3/Fe(VI) system, providing new insights into its activity and synergistic mechanisms. Such a combined technology has potential for the treatment of difficult-to-degrade industrial wastewater.

2.
Mar Environ Res ; 196: 106405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368649

RESUMO

Both temperature and nutrient levels are rising in worldwide ocean ecosystems, and they strongly influence biological responses of phytoplankton. However, few studies have addressed the interactive effects of temperature and nitrogen sources on physiological performance of the coccolithophore Emiliania huxleyi. In this study, we evaluated algal growth, photosynthesis and respiration, elemental composition, enzyme activity, and calcification under a matrix of two temperatures gradients (ambient temperature 20 °C and high temperature 24 °C) and two nitrogen sources (nitrate (NO3-) and ammonium (NH4+)). When the algae was cultured with NO3- medium, high temperature reduced algal photosynthesis and nitrate reductase activity, but it did not change other indicators significantly relative to ambient temperature. In addition, E. huxleyi preferred NO3- as the growth medium, whereas NH4+ had negative effects on physiological parameters. In the NH4+ medium, the growth rate, photosynthesis and photosynthetic rate, nitrate reductase activity, and particulate organic carbon and particulate organic nitrogen production rate of the algae decreased as temperature increased. Conversely, high temperature increased cellular particulate organic carbon, cellular particulate organic nitrogen, and particulate inorganic carbon levels. In summary, our findings indicate that the distribution and abundance of microalgae could be greatly affected under warming ocean temperature and different nutrient conditions.


Assuntos
Haptófitas , Haptófitas/fisiologia , Temperatura , Nitrogênio , Ecossistema , Carbono , Nitrato Redutases
3.
Proc Natl Acad Sci U S A ; 121(4): e2314396121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236736

RESUMO

In our quest to leverage the capabilities of the emerging single-atom catalysts (SACs) for wastewater purification, we confronted fundamental challenges related to electron scarcity and instability. Through meticulous theoretical calculations, we identified optimal placements for nitrogen vacancies (Nv) and iron (Fe) single-atom sites, uncovering a dual-site approach that significantly amplified visible-light absorption and charge transfer dynamics. Informed by these computational insights, we cleverly integrated Nv into the catalyst design to boost electron density around iron atoms, yielding a potent and flexible photoactivator for benign peracetic acid. This exceptional catalyst exhibited remarkable stability and effectively degraded various organic contaminants over 20 cycles with self-cleaning properties. Specifically, the Nv sites captured electrons, enabling their swift transfer to adjacent Fe sites under visible light irradiation. This mechanism accelerated the reduction of the formed "peracetic acid-catalyst" intermediate. Theoretical calculations were used to elucidate the synergistic interplay of dual mechanisms, illuminating increased adsorption and activation of reactive molecules. Furthermore, electron reduction pathways on the conduction band were elaborately explored, unveiling the production of reactive species that enhanced photocatalytic processes. A six-flux model and associated parameters were also applied to precisely optimize the photocatalytic process, providing invaluable insights for future photocatalyst design. Overall, this study offers a molecule-level insight into the rational design of robust SACs in a photo-Fenton-like system, with promising implications for wastewater treatment and other high-value applications.

4.
Small ; 20(14): e2309344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990354

RESUMO

Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for sustainable ammonia production. Although the majority of studies on the eNRR are devoted to developing efficient electrocatalysts, it is critical to study the influence of mass transfer because of the poor N2 transfer efficiency. Herein, a novel bubble-based microreactor (BBMR) is proposed that efficiently promotes the mass transfer behavior during the eNRR using microfluidic strategies. The BBMR possesses abundant triphasic interfaces and provides spatial confinement and accurate potential control, ensuring rapid mass transfer dynamics and improved eNRR performance, as confirmed by experimental and simulation studies. The ammonia yield of the reaction over Ag nanoparticles can be enhanced to 31.35 µg h-1 mgcat. -1, which is twice that of the H-cell. Excellent improvements are also achieved using Ru/C and Fe/g-CN catalysts, with 5.0 and 8.5 times increase in ammonia yield, respectively. This work further demonstrates the significant effect of mass transfer on the eNRR performance and provides an effective strategy for process enhancement through electrode design.

5.
Environ Sci Technol ; 57(48): 20206-20218, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37965750

RESUMO

In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ácido Peracético , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Ferro , Oxirredução , Sulfonamidas , Sulfanilamida , Concentração de Íons de Hidrogênio , Antibacterianos
6.
Small Methods ; 7(10): e2300394, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37428549

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) have the characteristics of fast reaction kinetics and crystal instability due to the intrinsically highly ionic bonding between the respective ions, which bring challenges for revealing the growth kinetics and practical applications. Compared with conventional batch synthesis methods, the single-function microreactor can achieve precise and stable control of the NCs synthesis process, but it still has the shortcoming of not being able to obtain information about the growth process. In this study, a micro Total Reaction System (µTRS) with remote control, online detection, and rapid data analysis functions is designed. µTRS can sample the photoluminescence information of CsPbBr3 NCs growth in ligand-assisted reprecipitation method. CsPbBr3 NCs with an emission range of 435-492 nm are successfully detected, which breaks the record of the smallest size of CsPbBr3 NCs synthesized directly from precursors. The real-time feature of µTRS enables the construction of an automated close-loop synthesis system. Besides, the rapid acquisition and timely processing of product information enable the rapid mapping of the operation space for CsPbBr3 NCs preparation, which provides a reliable and learnable data set for designing a fully autonomous microreaction system capable of synthesizing NCs.

7.
Sci Total Environ ; 894: 164982, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348716

RESUMO

Ocean deoxygenation, acidification, and decreased phosphorus availability are predicted to increase in coastal ecosystems under future climate change. However, little is known regarding the combined effects of such environmental variables on the green tide macroalga Ulva prolifera. Here, we provide quantitative and mechanistic understanding of the acclimation mechanisms of U. prolifera to ocean deoxygenation, acidification, and phosphorus limitation under both laboratory and semi-natural (mesocosms) conditions. We found that there were significant interactions between these global environmental conditions on algal physiological performance. Although algal growth rate and photosynthesis reduced when the nitrogen-to­phosphorus (N/P) ratio increased from 16:1 to 35:1 under ambient CO2 and O2 condition, they remained constant with further increasing N/P ratios of 105:1, 350:1, and 1050:1. However, the increasing alkaline phosphatase activities at high N/P ratios suggests that U. prolifera could use organic P to support its growth under phosphorus limitation. Deoxygenation had no effect on specific growth rate (SGR) but decreased photosynthesis under low N/P ratios of 16:1, 35:1, and 105:1, with reduced activities of several enzymes involved in N assimilation pathway being observed. Elevated CO2 promoted algal growth and alleviated the negative effect of deoxygenation on algal photosynthesis. The patterns of responses to high CO2 and low O2 treatments in in situ experiments were generally consistent with those observed in laboratory experiments. Our results generally found that the strong physiological acclimation capacity to elevated CO2, low O2, and high N/P could contribute to its large-scale blooming in coastal ecosystem.


Assuntos
Alga Marinha , Ulva , Ulva/fisiologia , Ecossistema , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Oceanos e Mares , Alga Marinha/metabolismo
8.
Cancer Cell Int ; 23(1): 14, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717845

RESUMO

BACKGROUND: As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS: Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS: CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION: The simple and cost­effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.

9.
Ann Transl Med ; 9(11): 946, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34350261

RESUMO

Epithelial-mesenchymal transition (EMT) is a morphological process in which epithelial cells transform into mesenchymal cells via a specific procedure. EMT plays an important role in the cancer invasion-metastasis cascade and the current treatment of metastatic cancer, influences the migration, polarity, and adhesion of tumor cells, promotes their migration, invasiveness, anti-apoptotic ability. It contributes to the changes of the tumor microenvironment and suppresses the sensitivity of tumor cells to chemotherapy, causing cancer metastasis and worse, hindering the control and therapy of it. This paper reviews the mechanisms, detection, and treatments of cancer metastasis that have been identified and applied to date, summarizes the EMT-related biological molecules, providing a reference for EMT-targeted research and therapy. As EMT is significant in the progress of tumor metastasis, it is meaningful for the therapy and control of metastatic cancer to understand the mechanism of EMT at the molecular level. We summarized the mechanisms, detection and therapeutic implications of EMT, listed the research progress of molecules like genes, miRNAs, signaling pathways in EMT. We also discussed the prospects of EMT-targeted treatment in cancer metastasis interventions and the challenges the treatment and researches are facing. The summary is conducive to the treatment and further research of EMT and metastatic cancer.

10.
Viruses ; 13(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808275

RESUMO

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. Owing to the lack of effective vaccines and specific therapeutic options for PEDV, it is pertinent to develop new and available antivirals. This study identified, for the first time, a salinomycin that actively inhibited PEDV replication in Vero cells in a dose-dependent manner. Furthermore, salinomycin significantly inhibited PEDV infection by suppressing the entry and post-entry of PEDV in Vero cells. It did not directly interact with or inactivate PEDV particles, but it significantly ameliorated the activation of Erk1/2, JNK and p38MAPK signaling pathways that are associated with PEDV infection. This implied that salinomycin inhibits PEDV replication by altering MAPK pathway activation. Notably, the PEDV induced increase in reactive oxidative species (ROS) was not decreased, indicating that salinomycin suppresses PEDV replication through a pathway that is an independent pathway of viral-induced ROS. Therefore, salinomycin is a potential drug that can be used for treating PEDV infection.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Piranos/farmacologia , Doenças dos Suínos/virologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Sistema de Sinalização das MAP Quinases , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
11.
Front Cell Dev Biol ; 9: 774957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118067

RESUMO

Ferroptosis, a newly discovered form of regulatory cell death (RCD), has been demonstrated to be distinct from other types of RCD, such as apoptosis, necroptosis, and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation and oxidative perturbation, and is inhibited by iron chelators and lipophilic antioxidants. This process is regulated by specific pathways and is implicated in diverse biological contexts, mainly including iron homeostasis, lipid metabolism, and glutathione metabolism. A large body of evidence suggests that ferroptosis is interrelated with various physiological and pathological processes, including tumor progression (neuro)degenerative diseases, and hepatic and renal failure. There is an urgent need for the discovery of novel effective ferroptosis-modulating compounds, even though some experimental reagents and approved clinical drugs have been well documented to have anti- or pro-ferroptotic properties. This review outlines recent advances in molecular mechanisms of the ferroptotic death process and discusses its multiple roles in diverse pathophysiological contexts. Furthermore, we summarize chemical compounds and natural products, that act as inducers or inhibitors of ferroptosis in the prevention and treatment of various diseases. Herein, it is particularly highlighted that natural products show promising prospects in ferroptosis-associated (adjuvant) therapy with unique advantages of having multiple components, multiple biotargets and slight side effects.

12.
J Environ Sci (China) ; 67: 145-153, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778147

RESUMO

Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system.


Assuntos
Micro-Ondas , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biodegradação Ambiental , Hidrogênio , Esgotos
13.
Ultrason Sonochem ; 41: 661-669, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29137798

RESUMO

Because of characteristics of large density, high viscosity and poor mobility, the processing and transportation of residual oil are difficult and challenging, viscosity reduction of residual oil is of great significance. In this paper, the effects of different placement forms of ultrasonic transducers on the sound pressure distribution of ultrasonic inside a cubic container have been simulated, the characteristics of oil bath heating and ultrasonic viscosity reduction were compared, viscosity reduction rule of residual oil was experimentally analyzed by utilizing Response Surface Method under conditions of changing ultrasonic exposure time, power and action mode, the mechanism of viscosity reduction was studied by applying Fourier transform infrared spectrometer, the viscosity retentivity experiment was carried out at last. Experiments were conducted using two kinds of residual oil, and results show that ultrasonic effect on the viscosity reduction of residual oil is significant, the higher viscosity of residual oil, the better effect of ultrasonic, ultrasonic power and exposure time are the significant factors affecting the viscosity reduction rate of residual oil. The maximum viscosity reduction rate is obtained under condition of ultrasonic power is 900W, exposure time is 14min and action mode of exposure time is 2s and interrupting time is 2s, viscosity reduction rate reaching up to 63.95%. The infrared spectroscopy results show that light component in residual oil increased. The viscosity retentivity experiment results show that the viscosity reduction effect remains very well. This paper can provide data reference for the application of ultrasonic in the field of viscosity reduction for residual oil.

14.
Ultrasonics ; 71: 143-151, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344606

RESUMO

Ultrasonic disintegration is a very promising sludge pretreatment method that leverages the cavitation effect to produce extreme physical environments characterized by high temperatures and high pressures. This process disintegrates sludge structure features, promotes sludge dewatering, and aides resource recovery. This paper presents a newly designed continuous ultrasonic sludge treatment device. The characteristics of the ultrasonic wave propagated in the activated sludge were simulated, with the results showing that at lower frequencies, the acoustic pressure energy distribution exhibits more local concentrations, whereas at 80kHz, the energy distribution is relatively uniform as a result of the interference of standing waves. Subsequently, activated sludge was ultrasonically treated with different exposure times and frequencies. The sludge's capillary suction time, particle size, and moisture content were measured. The results showed different trends for each of the investigated parameters. The dewatering performance was best when the exposure time was 5-10s. Finally, different substances were added to the ultrasonically treated sludge to analyze the effects of ultrasonic treatment on anaerobic digestion. The gas production rate was higher when glucose was the added substance than it was for yeast. The highest total concentration of produced gas, including both hydrogen and methane, was 34% for an ultrasonic input power of 200W at a 25kHz frequency, an exposure time of 20s, and with 30g of added glucose. The gas production rate was found to be higher at the lower frequency when frequency was the only variable. These experiments demonstrate that ultrasonic treatment can change the structure of sludge particles and the moisture content of the sludge, improving sludge dewatering performance. Furthermore, after ultrasonic treatment can improve gas production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...