Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(7): 3269-3278, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916513

RESUMO

Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Fígado/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , LDL-Colesterol/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
2.
Food Funct ; 13(13): 7020-7028, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723202

RESUMO

Chinese medicinal and edible plants such as Panax notoginseng and ginseng are widely used for the treatment of atherosclerosis (AS). AS is the main pathological basis of cardiac-cerebral vascular disease, which seriously threatens human health and quality of life. Low-density lipoprotein (LDL) is the main pathogenic factor of AS. The LDL receptor (LDLR) is an important protein that functions to mediate the uptake and degradation of plasma LDL. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) can mediate the internalization and degradation of LDLR. So, increasing the LDLR level by inhibiting PCSK9 is an important means of prevention and treatment of AS. In this study, by combining interaction technology (surface plasmon resonance, SPR) of small molecule compounds with membrane receptor proteins, cell experiments, and in vivo experiments, it is proved for the first time that 20(S)-protopanaxadiol (PPD), as a hydrolytic product of Panax notoginseng saponins in the intestinal tract, can bind to the extracellular domain of LDLR and inhibit the role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mediating LDLR degradation. The results showed that PPD significantly reduced aortic plaques and hepatic steatosis in HFD-fed ApoE KO mice. LDLR protein levels were elevated in the liver tissues isolated from PPD-treated HFD-fed ApoE KO mice and PPD-treated HepG2 cells. Our findings demonstrated that PPD significantly increased LDLR levels and reduced AS in the HFD-fed ApoE KO mice on account of LDLR degradation being inhibited by PPD inhibiting the interaction between PCSK9 and LDLR.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Células Hep G2 , Humanos , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sapogeninas , Subtilisinas
3.
Nat Prod Res ; 36(15): 3951-3956, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749420

RESUMO

Dendrocandins are characteristic chemical structures of D. officinale and have strong physiological bioactivities. In this study, a dendrocandin analogue (1) has been prepared by total synthesis (9 steps, 12.6% overall yield) in which coupling reaction and Wittig reaction as the key steps. Compound 1 was also evaluated for its anticancer activity in vitro against six human cancer cells (MCF-7, A549, A431, SW480, HepG-2 and HL-60) using MTT assays. Compound 1 showed potent cytotoxicity, with the IC50 value 16.27 ± 0.26 µM. The expression levels of apoptotic proteins indicated that compound 1 can up-regulate the expression of apoptotic proteins, leading to apoptosis. This compound suggested that it's potential as anticancer agent for further development.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
4.
Food Funct ; 11(11): 9686-9695, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33057539

RESUMO

Renal fibrosis is a characteristic of diabetic nephropathy, which is a serious complication of diabetes. It has been reported that (-)-epigallocatechin gallate (EGCG) attenuates renal fibrosis. However, the molecular mechanism of regulation by EGCG in this process remains unclear. Previous studies showed that abnormal activation of Notch signaling contributes to the development of renal fibrosis. Previous studies have demonstrated that EGCG attenuates Notch1 expression. In this study, we found that the levels of fibronectin and Notch1 expression were decreased in human embryonic kidney cells after treatment with EGCG. We also observed that the type II transforming growth factor beta receptor (TGFßRII) and Smad3 pathway were inhibited in kidney cells by treatment with EGCG. In the diabetic kidney, we found that the activation of Notch signaling was attenuated by administration of EGCG. Moreover, TGFßRII and Smad3 phosphorylation could be inhibited by treatment with EGCG in the kidney. These results indicated that EGCG may improve renal fibrosis by targeting Notch via inhibition of the TGFß/Smad3 pathway in diabetic mice. Our findings provide insight into the therapeutic strategy for diabetes-induced renal fibrosis, and suggest EGCG to be a novel potential medicine for the treatment of chronic kidney disease in patients with diabetes.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Diabetes Mellitus Experimental/prevenção & controle , Insuficiência Renal Crônica/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Catequina/administração & dosagem , Catequina/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/prevenção & controle , Feminino , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos ICR , Distribuição Aleatória , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/complicações , Transdução de Sinais , Proteína Smad3/metabolismo , Estreptozocina , Fator de Crescimento Transformador beta/metabolismo
6.
FASEB J ; 33(1): 953-964, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070931

RESUMO

Delayed wound healing is one of the most prominent clinical manifestations of diabetes and lacks satisfactory treatment options. Persistent inflammation occurs in the late phase of wound healing and impairs the healing process in mice with diabetes mellitus (DM). In this study, we observed that the late wound healing in streptozotocin (STZ)-induced DM mice could be improved by (-)-epigallocatechin gallate (EGCG). The macrophage accumulation, inflammation response, and Notch signaling can be inhibited by EGCG in the skin wounds of DM mice. Furthermore, we found that the LPS-induced inflammation response including overactivated Notch signaling, was inhibited by EGCG in mouse macrophages. Moreover, we confirmed that EGCG could directly bind with mouse Notch-1. In addition, our studies indicated that diabetic wound healing was improved by EGCG treatment before or after the inflammation phase by targeting the Notch signaling pathway, which suggests that the pre-existing diabetic wound healing can be improved by EGCG. To summarize, wound healing can be improved by EGCG through targeting Notch in STZ-induced DM mice. Our findings provide insight into the therapeutic strategy for diabetic wounds and offer EGCG as a novel potential medicine to treat chronic wounds.-Huang, Y.-W., Zhu, Q.-Q., Yang, X.-Y., Xu, H.-H., Sun, B., Wang, X.-J., Sheng, J. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Receptores Notch/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Catequina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , Transdução de Sinais , Pele/metabolismo , Estreptozocina , Cicatrização/fisiologia
7.
Luminescence ; 32(7): 1307-1312, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28544697

RESUMO

A Schiff base compound derived from naphthalene has been synthesized and characterized as an Al3+ -selective fluorescent probe. The chemosensor (L) exhibits high selectively for Al3+ in aqueous solution, even in the presence of biologically relevant cations such as Na+ , K+ , Ca2+ , Mg2+ , Pb2+ and several transition metal ions. There was no observed interference from anions like Br- , Cl- , HSO3- , SO32- , S2 O32- , NO2- , CO32- and AC- . The lowest detection limit for the chemosensor L was found to be 1.89 × 10-8  M with a linear response towards Al3+ over a concentration range of 5 × 10-6 to 4 × 10-5  M. Furthermore, the proposed chemosensor has been used for imaging of Al3+ in two different types of cells with satisfying results, which further demonstrates its value for practical application in biological systems.


Assuntos
Alumínio/análise , Corantes Fluorescentes/química , Naftalenos/química , Espectrometria de Fluorescência/métodos , Animais , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Limite de Detecção , Espectroscopia de Ressonância Magnética , Imagem Molecular/métodos , Estrutura Molecular , Células PC12 , Ratos , Bases de Schiff , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Front Pharmacol ; 8: 966, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379436

RESUMO

Background:Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods:In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro.

9.
Molecules ; 21(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187321

RESUMO

Epigallocatechin gallate (EGCG) is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2) were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification, and the structures were assigned as follows: epigallocatechin gallate-4''-O-ß-d-glucopyranoside (EGCG-G1, 2) and epigallocatechin gallate-4',4''-O-ß-d-gluco-pyranoside (EGCG-G2, 3). The EGCG glycosides were evaluated for their anticancer activity in vitro against two human breast cell lines (MCF-7 and MDA-MB-231) using MTT assays. The inhibition rate of EGCG glycosides (EGCG-G1 and EGCG-G2) is not obvious. The EGCG glycosides are more stable than EGCG in aqueous solutions, but exhibited decreasing antioxidant activity in the DPPH radical-scavenging assay (EGCG > EGCG-G2 > EGCG-G1). Additionally, the EGCG glycosides exhibited increased water solubility: EGCG-G2 and EGCG-G1 were 15 and 31 times as soluble EGCG, respectively. The EGCG glycosides appear to be useful, and further studies regarding their biological activity are in progress.


Assuntos
Catequina/análogos & derivados , Glucose/metabolismo , Antioxidantes/farmacologia , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Humanos
10.
Chin J Nat Med ; 13(8): 595-601, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26253492

RESUMO

The present study was designed to determine the effects of Puer tea and green tea on blood glucose level. Male BALB/c mice were administered green tea extract (GTE) or Puer tea extract (PTE), either intragastrically or in their drinking water. The major components of these teas are epigallocatechin gallate (EGCG) and caffeine, respectively. Blood glucose measurement results showed that mice fed intragastrically or mice that drank GTE, PTE or caffeine showed significantly lower blood glucose levels compared to the control group. However, EGCG exhibited no influence on the blood glucose levels. When caffeine was eliminated from the GTE and PTE, the effect on the blood glucose levels was abolished, but the effect was recovered when caffeine was re-introduced into the extracts. Evaluation of hematological and biochemical indices at the time of the greatest caffeine-induced decrease in blood glucose levels showed that the effect of caffeine was specific. Microarray analyses were performed in 3T3-L1 preadipocytes and mature adipocytes treated with 0.1 mg · mL(-1) caffeine to identify factors that might be involved in the mechanisms underlying these effects. The results showed that few genes were changed after caffeine treatment in adipocytes, and of them only phospholipid transfer protein (PLTP) may be ralated to blood glucose. In conclusion, this study indicates that caffeine may be the key constituent of tea that decreases blood glucose levels, and it may be used to treat type 2 diabetes.


Assuntos
Glicemia/metabolismo , Cafeína/farmacologia , Camellia sinensis/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Chá , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Transferência de Fosfolipídeos/metabolismo
11.
Chin J Nat Med ; 12(9): 654-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25263976

RESUMO

AIM: (-)-Epigallocatechin-3-gallate (EGCG), a major compound of tea polyphenols, exhibited antitumor activity in previous studies. In these studies, EGCG usually inhibits EGFR, and impairs the ERK1/2 phosphorylation in tumor cells. The aim was to clarify the mechanism of ERK1/2 activation induced by EGCG. METHOD: Jurkat and 293T cells were treated with EGCG in different culture conditions. Western Blotting (WB) was employed to analyze ERK1/2 and MEK phosphorylation. Cetuximab and FR180204 were used to inhibit cell signaling. The stability of EGCG was assessed by HPLC. The concentration of hydrogen peroxide generated by the auto-oxidation of EGCG was determined by photocolorimetric analysis. RESULTS: Activation of ERK1/2 was observed to be both time-and dose-dependent. Stimulation of cell signaling was dependent on MEK activity, but independent of EGFR activity. Unexpectedly, EGCG was depleted within one hour of incubation under traditional culture conditions. Auto-oxidation of EGCG generated a high level of hydrogen peroxide in the medium. Addition of catalase and SOD to the acidic medium inhibited the oxidation of EGCG. However, this particular condition also prevented the phosphorylation of ERK1/2. The generation of ROS by hydrogen peroxide may also induce ERK1/2 activation in Jurkat cells. CONCLUSION: ERK1/2 phosphorylation was caused by auto-oxidation of EGCG. Traditional culture conditions were determined to be inappropriate for EGCG research.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Catalase/metabolismo , Catequina/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Células Jurkat , Oxirredução , Fosforilação , Superóxido Dismutase/metabolismo
12.
Food Funct ; 5(7): 1520-8, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24836454

RESUMO

Caffeine is present in a number of dietary sources consumed worldwide. Although its pharmacokinetics has been intensively explored, little is known about complexed caffeine (C-CAF) in aqueous extraction of fermented Pu-er tea. The major components of C-CAF are oxidative tea polyphenols (OTP) and caffeine. Furthermore, the C-CAF can be precipitated in low pH solution. After administering the same amount of total caffeine and comparing the peak level of plasma caffeine with the coffee (contains 0.11 ± 0.01% C-CAF) group, the results showed that the caffeine/OTP (contains 66.67 ± 0.02% C-CAF) group and the instant Pu-er tea (contains 23.18 ± 0.02% C-CAF) group were 33.39% and 25.86% lower, respectively. The concentration of the metabolites of caffeine supports the idea that the absorption of the C-CAF was inhibited in mice. Congruent with this result, the amount of caffeine detected in mice excrement showed that more caffeine was eliminated in the caffeine/OTP group and the Pu-er tea group. The locomotor activity tests of mice demonstrated that the stimulating effect of caffeine in caffeine/OTP and Pu-er tea was weaker than in coffee. Our findings demonstrate that caffeine can be combined with OTP and the absorption of C-CAF is inhibited in mice, thus decreasing the irritation effect of caffeine. This may also be developed as a slow release formulation of caffeine.


Assuntos
Cafeína/farmacocinética , Chá/química , Animais , Cafeína/administração & dosagem , Cafeína/sangue , Café/química , Feminino , Fermentação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polifenóis/administração & dosagem , Polifenóis/sangue , Polifenóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...