Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133972, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461665

RESUMO

Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, ß-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Ésteres/metabolismo , Ácidos Ftálicos/metabolismo , Dibutilftalato/metabolismo , Biodegradação Ambiental , Ecossistema , Dietilexilftalato/metabolismo
2.
Water Res ; 250: 120987, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113594

RESUMO

Diuron (N-(3,4-dichlorophenyl)-N,N­dimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Diurona/toxicidade , Proteômica , Dinoflagellida/fisiologia , Proliferação Nociva de Algas
3.
Medicine (Baltimore) ; 99(47): e21856, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217787

RESUMO

BACKGROUND: To systematically evaluate the efficacy and safety of combined aclidinium bromide and formoterol fumarate for chronic obstructive pulmonary disease (COPD). METHODS: Electronic databases including PubMed, MEDLINE, EMBASE, Cochrane Library Central Register of Controlled Trials, WanFang, and China National Knowledge Infrastructure (CNKI) database were searched for studies on the use of combined aclidinium bromide and formoterol fumarate in the treatment of COPD. Two independent researchers performed literature screening, data extraction, and assessment of quality of studies. The strength of the association of the efficacy and safety of combined aclidinium bromide and formoterol fumarate in the treatment of COPD was evaluated according to the odds ratio (OR), mean differences (MDs), and 95% confidence interval (CI). Statistical analysis was carried out via using RevMan 5.3 software. RESULTS: The results of the present study will be published in a peer-reviewed journal. CONCLUSION: The conclusion of the present study will provide evidence to judge whether combined aclidinium bromide and formoterol fumarate is an effective and safety intervention in the treatment of COPD. SYSTEMATIC REVIEW REGISTRATION NUMBER: INPLASY202070063.


Assuntos
Broncodilatadores/uso terapêutico , Fumarato de Formoterol/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Projetos de Pesquisa , Tropanos/uso terapêutico , Combinação de Medicamentos , Humanos , Metanálise como Assunto , Revisões Sistemáticas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...