Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 316(Pt 1): 120555, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332709

RESUMO

Due to anthropogenic activities, heavy metals are discharged into the hydrosphere and deposit onto the sediment. Heavy metals remobilize through physical disturbance and change in environmental conditions, posing a risk to environments and human health. Among several remediation methods, active layer capping is considered to be more feasible due to its financial and technical advantages; however, its long-term effects remain unknown. To overcome this problem, this work applied a novel, recoverable amendment, sulfurized magnetic biochar (SMBC), to remediate multiple heavy metal (Cu, Ni, Zn, Cr, Hg, and MeHg) contaminated sediment. Physiochemical characterization shows magnetite (Fe3O4) crystalline in both magnetic biochar (MBC) and SMBC, with such characteristics resulting in a greater surface area (324.9 and 346.3 m2/g) than BC (39.6 m2/g) and SBC (65.0 m2/g). FeS crystalline was also observed in SMBC, which plays an important role in controlling heavy metal release from sediment. Microcosm experiments indicated the effectiveness of SMBC in lowering aquatic Cu, Ni, Zn, Hg, and MeHg releases was significantly greater than the other three biochar materials. Notably, the recovery of SMBC by magnetism was 87%, demonstrating the exceptional recoverability of SMBC from seawater and sediment. Based on its robust capability in lowering Cu, Ni, Zn, Hg, and MeHg release and excellent recoverability from seawater and sediment, this technique represents a practical alternative to conventional approaches for heavy metal immobilization from sediment.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Carvão Vegetal/química , Fenômenos Magnéticos , Metais Pesados/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos
2.
Sci Total Environ ; 784: 147240, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088046

RESUMO

Due to public health threats resulting from mercury (Hg) and its distribution in the food chain, global restrictions have been placed on Hg use and emissions. Biochar is a porous, carbonaceous adsorbent typically derived from waste biomass or organic matter, making it an eco-friendly material for aqueous mercury (Hg(II)) control. Functionalization of biochar can improve performance in pollution control applications. In this work, carbonization, magnetization, and sulfurization of biochar were combined into a single heating step to prepare sulfurized magnetic biochar (SMBC) for Hg(II) removal from water. Results indicate that SMBC prepared at 600 °C adsorbed 8.93 mg/g Hg(II), more than materials prepared at 400, 500, 700, 800, and 900 °C. Additionally, Hg(II) adsorption onto SMBC was 53.0% and 11.5% greater than onto magnetic biochar (MBC) and biochar (BC), respectively. Hg(II) adsorption is shown to be favorable in acidic conditions (pH 3.5-5), thermodynamically spontaneous, and endothermic. Adsorption results fit the pseudo-second-order (R2 = 0.990 and the sum of squared error (SSE) = 5.382) and external mass transfer (R2 = 0.971 and SSE = 9.422) models. The partitioning coefficients were 4.964 mg/g/µM in freshwater, 0.176 mg/g/µM in estuary water, and 0.275 mg/g/µM in seawater, highlighting the importance of salinity in environmental remediation applications. In summary, SMBC can be readily prepared with minimal processing steps. The product is a robust adsorbent for Hg(II), and it can potentially be applied to remediate contaminated water/sediment/soil in the future.

3.
J Air Waste Manag Assoc ; 70(6): 616-628, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32182185

RESUMO

Beaded activated carbons (BACs) were derived from waste bamboo tar through carbonization (500°C for 2 hr) followed by physical activation using carbon dioxide (800-900°C for 2-4 hr). The adsorbent was examined for their physical and chemical properties, adsorption capacities toward methylethylketone (MEK) and toluene, and regenerabilities under microwave heating. It was found that the maximum total surface area reached for bamboo-tar-derived BAC after physical activation was 1364 m2 g-1, and more than 95% of the area was attributed to the microporous structures. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were applied to the adsorption isotherm fitting, and the minimum R2 for each model was 0.986, 0.915, and 0.943, respectively. The isosteric heats of adsorption calculated based on D-R parameters for methylethylketone and toluene were 44.04 to 51.50 and 45.88 to 73.27 KJ mol-1, respectively. They were slightly over the range of physisorption and increased with adsorbate loading, which might be related to the micropore filling mechanism. Microwave regeneration under 600 W of power output removed most of the adsorbate (>93.03%) within 8 min. The results of this study are intended to benefit future study on waste-derived adsorbent in environmental applications. IMPLICATIONS: Recycling waste bamboo tar for the novel adsorbent preparation is shown feasible in this study. Beaded activated carbon (BAC) synthesized from this waste bamboo tar possessed a high specific surface area, which aided in the capturing of volatile organic compounds (VOCs). Three adsorption isotherms, Langmuir, Freundlich, Dubinin-Radushkevich (D-R) models can be applied in interpreting the experimental adsorption data, providing information on adsorption heat and possible adsorption mechanism. A potential microwave regeneration method for BAC is tested, showing high desorption efficiencies with minimum heel formation. These findings can provide a new pathway for waste bamboo tar management and VOC abatement using adsorbents.


Assuntos
Poluentes Atmosféricos/química , Bambusa , Butanonas/química , Carvão Vegetal/química , Reciclagem , Tolueno/química , Gerenciamento de Resíduos/métodos , Adsorção , Cinética , Micro-Ondas
4.
J Air Waste Manag Assoc ; 63(8): 977-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24010379

RESUMO

UNLABELLED: Bamboo tar is a waste by-product from the process of bamboo charcoal production. After distillation under reduced pressure, bamboo tar becomes a highly viscous liquid containing phenolic compounds at more than 70 wt%. Therefore, bamboo tar could be an excellent replacement for the phenolic compounds produced by the decomposition of petroleum. In this study, bamboo tar was mixed with formalin under a weak alkaline condition to form cured phenol-formaldehyde (PF) beads through suspension polymerization. In total, 35% of the obtained PF resin produced spherical beads with a particle size ranging from 9 to 16 mesh. The char yield after 500 degrees C carbonization was 60.4 wt%, according to thermogravimetric analysis. This high char yield is advantageous for the subsequent activation process. After physical activation using CO2 at 900 degrees C for 2 hr the carbide yield was up to 73.0 wt%. The specific surface area of activated PF beads was dependent on the activation time and temperature. Toluene adsorption results suggest that the activated PF beads are applicable to the adsorption and recovery of VOC gases. Monolayer adsorption may limit the VOC adsorption with activated PF beads because the adsorption isotherms were better fitted with the Langmuir model. IMPLICATIONS: Bamboo tar is shown to be a good replacement for the phenolic compounds from decomposition of petroleum to form activated phenol-formaldehyde (PF) beads. Toluene adsorption tests suggest that the activated PF beads have potential to adsorb and recover VOC gases. Nevertheless, due to the low specific surface area of the activated PF beads from bamboo tar, a further enhancement in both meso- and microporosity is needed in the future experiments. The experimental data provide a contribution to better understanding the possibility of resource recovery of waste agricultural by-products and their potential application in environment protection.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Substâncias Perigosas/isolamento & purificação , Fenóis/química , Poaceae , Tolueno/isolamento & purificação , Formaldeído/química , Resíduos Industriais , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...