Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702187

RESUMO

Mismatch negativity (MMN) is commonly recognized as a neural signal of prediction error evoked by deviants from the expected patterns of sensory input. Studies show that MMN diminishes when sequence patterns become more predictable over a longer timescale. This implies that MMN is composed of multiple subcomponents, each responding to different levels of temporal regularities. To probe the hypothesized subcomponents in MMN, we record human electroencephalography during an auditory local-global oddball paradigm where the tone-to-tone transition probability (local regularity) and the overall sequence probability (global regularity) are manipulated to control temporal predictabilities at two hierarchical levels. We find that the size of MMN is correlated with both probabilities and the spatiotemporal structure of MMN can be decomposed into two distinct subcomponents. Both subcomponents appear as negative waveforms, with one peaking early in the central-frontal area and the other late in a more frontal area. With a quantitative predictive coding model, we map the early and late subcomponents to the prediction errors that are tied to local and global regularities, respectively. Our study highlights the hierarchical complexity of MMN and offers an experimental and analytical platform for developing a multitiered neural marker applicable in clinical settings.


Assuntos
Estimulação Acústica , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Adulto Jovem , Adulto , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Adolescente
2.
Commun Biol ; 5(1): 1076, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216885

RESUMO

The human brain is proposed to harbor a hierarchical predictive coding neuronal network underlying perception, cognition, and action. In support of this theory, feedforward signals for prediction error have been reported. However, the identification of feedback prediction signals has been elusive due to their causal entanglement with prediction-error signals. Here, we use a quantitative model to decompose these signals in electroencephalography during an auditory task, and identify their spatio-spectral-temporal signatures across two functional hierarchies. Two prediction signals are identified in the period prior to the sensory input: a low-level signal representing the tone-to-tone transition in the high beta frequency band, and a high-level signal for the multi-tone sequence structure in the low beta band. Subsequently, prediction-error signals dependent on the prior predictions are found in the gamma band. Our findings reveal a frequency ordering of prediction signals and their hierarchical interactions with prediction-error signals supporting predictive coding theory.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...