Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(20): 5359-5365, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38728665

RESUMO

Lithium ruthenium oxide (Li2RuO3) is an archetypal lithium rich cathode material (LRCM) with both cation and anion redox reactions (ARRs). Commonly, the instability of oxygen redox activities has been regarded as the root cause of its performance degradation in long-term operation. However, we find that not triggering ARRs does not improve and even worsens its cyclability due to the detrimental strain accumulation induced by Ru redox activities. To solve this problem, we demonstrate that F-doping in Li2RuO3 can alter its preferential orientation and buffer interlayer repulsion upon Ru redox, both of which can mitigate the strain accumulation along the c-axis and improve its structural stability. This work highlights the importance of optimizing cation redox reactions in LRCMs and provides a new perspective for their rational design.

2.
Chem Sci ; 13(27): 8204, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35919427

RESUMO

[This corrects the article DOI: 10.1039/D0SC01146K.].

3.
Acta Biomater ; 147: 235-244, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644327

RESUMO

Hydrogel as a local drug depot can increase drug concentration at the tumor site. However, conventional drug-loaded hydrogel is typically formed by direct dissolution of drug molecules inside the hydrogel, which usually suffers from limited drug retention and poor tumor penetration. In this study, a nanocomposite hydrogel consisting of oxaliplatin (OXA)-conjugated G5 polyamidoamine (G5-OXA) and oxidized dextran (Dex-CHO) is constructed to improve local drug delivery. The OXA-containing nanocomposite hydrogel (denoted as PDO gel) is injectable and could maintain in vivo up to more than three weeks, which increases drug retention in tumor tissues. More interestingly, G5-OXA released from the PDO gel show potent tumor penetration mainly through an active transcytosis process. In vivo antitumor studies in an orthotopic 4T1 tumor model show that PDO gel significantly inhibits primary tumor growth as well as the metastasis. In addition, the PDO gel can also activate the immunosuppressive tumor microenvironment through immunogenic cell death effect, and further improves therapeutic efficacy with the combination of PD-1 antibody. These results demonstrate that the nanocomposite hydrogel can simultaneously enhance the retention and penetration of chemotherapeutic drugs via the combination of both advantages of hydrogel and nanoparticles, which provides new insights for the design of local drug delivery systems. STATEMENT OF SIGNIFICANCE: Hydrogel represents an important class of local drug delivery depot. However, conventional drug-loaded hydrogel is usually achieved by direct dissolution of small drug molecules inside the hydrogel, which typically suffers from limited drug retention and poor tumor penetration. Herein, we developed a nanocomposite hydrogel, which could gradually degrade and release drug-conjugated small nanoparticles (∼ 6 nm) for improved tumor penetration through the combination of an active transcytosis process and a passive diffusion process. This nanocomposite hydrogel system improved tumor penetration and retention of drug in primary tumors as well as the drug deposition in lymph nodes, which significantly suppressed tumor growth and metastasis.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Hidrogéis/química , Nanogéis , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/patologia , Oxaliplatina/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral
4.
Small ; 17(29): e2101208, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145747

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a low survival rate. The therapeutic effect of chemotherapy and immunotherapy for PDAC is disappointing due to the presence of dense tumor stroma and immunosuppressive cells in the tumor microenvironment (TME). Herein, a tumor-penetrating nanoparticle is reported to modulate the deep microenvironment of PDAC for improved chemoimmunotherapy. The tumor pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated. They self-assemble into nanoparticles (denoted as SPN@Pro-Gem) with the size around 120 nm at neutral pH, but switch into small particles (≈8 nm) at tumor site to facilitate deep delivery of Gem into the tumor parenchyma. In addition to killing cancer cells that resided deeply in the tumor tissue, SPN@Pro-Gem could modulate the TME by reducing the abundance of tumor-associated macrophages and myeloid-derived suppressor cells as well as upregulating the expression level of PD-L1 of tumor cells. This collectively facilitates the infiltration of cytotoxic T cells into the tumors and renders checkpoint inhibitors more effective in previously unresponsive PDAC models. This study reveals a promising strategy for improving the chemoimmunotherapy of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Imunoterapia , Nanomedicina , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral
5.
Small ; 17(8): e2006373, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33522133

RESUMO

Up to now, the silicon-graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro-nano structured composites of graphite coating by ZnO-incorporated and carbon-coated silicon (marked as Gr@ZnO-Si-C) are reasonably synthesized via an efficient and convenient method of liquid phase self-assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO-Si-C deliver excellent lithium battery performance with good rate performance and stable long-cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g-1 tested at 600 and 1200 mA g-1 , respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO-Si-C composites, the pouch full cells of Gr@ZnO-Si-C||NCM523 are assembled and used to evaluate the commercial prospects of Si-graphite composites, offering highly useful information for researchers working in the battery industry.

6.
Chem Sci ; 11(20): 5323-5327, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34122990

RESUMO

Herein, a versatile strategy for the construction of biofunctional Janus particles (JPs) through the combination of Pickering emulsion and copper-free click chemistry is developed for the study of particle-mediated cell-cell interactions. A variety of biomolecules including bovine serum albumin (BSA), ferritin, transferrin (Tf), and anti-signal regulatory protein alpha antibodies (aSIRPα), etc., can be incorporated into the Janus platform in a spatially defined manner. JPs consisting of Tf and aSIRPα (Tf-SPA1-aSIRPα JPs) demonstrate a significantly improved binding affinity to either macrophages or tumor cells compared to their uniformly modified counterparts. More importantly, Tf-SPA1-aSIRPα JPs mediate more efficient phagocytosis of tumor cells by macrophages as revealed by real-time high-content confocal microscopy. This study demonstrates the potential advantages of JPs in mediating cell-cell interactions and may contribute to the emerging cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...