Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 46(2): 219-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807906

RESUMO

Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.

2.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605351

RESUMO

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Assuntos
Genomas de Plastídeos , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósseis , Teorema de Bayes , Plastídeos/genética
3.
Sci Rep ; 14(1): 6303, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491172

RESUMO

Induction skull melting (ISM) technology could melt metals with avoiding contamination from crucible. A long-standing problem of ISM is that the low charge energy utilization and inhomogeneous fields have obstructed its application in many critical metal materials and manufacturing processes. The present work investigated the problem through the structure optimization strategy and established a numerical electromagnetic-field model to evaluate components' eddy current loss. Based on the model, the effect of crucible and inductor structure on charge energy utilization, etc. was studied. Furtherly, the charge energy utilization was increased from 27.1 to 45.89% by adjusting the system structure. Moreover, structure modifications are proposed for enhancing electromagnetic intensity and uniformity, charge soft contact and uniform heating. The work constructed a basis for framing new solutions to the problem through ISM device structure optimization.

4.
Rev Sci Instrum ; 93(6): 065112, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778060

RESUMO

The integration of the strapdown inertial navigation system (SINS) and Doppler velocity log (DVL) has become a basic navigation solution for Autonomous Underwater Vehicles (AUVs). However, DVL cannot obtain the velocity relative to the ground when the distance between the AUV and seabed is over the operating range, which occurs often when AUVs are sailing in the middle layer of the ocean. When the DVL velocity relative to the current is used for an integrated filter, the unknown current velocity is coupled with the measured velocity error, which decreases the positioning accuracy. To address this problem, the effect of unknown coupled current velocity is analyzed from the perspective of filter observability, and an integrated SINS/DVL/virtual velocity navigation method is proposed. The virtual velocity based on the velocity variation extracted from the inertial measurement unit and DVL is constructed and used as an aided measurement for the Kalman filter. With the help of virtual velocity, the current velocity can be easily decoupled from measured SINS velocity error. The results of simulation and experiments demonstrated that the proposed method can effectively improve both the convergence speed and accuracy of velocity error compared with the classical method with SINS/DVL integration and, thus, significantly improve the positioning accuracy.

5.
Materials (Basel) ; 15(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268917

RESUMO

Developing light structure materials that work stably at elevated temperatures is a long-standing challenge for many application fields, particularly in the development of aerospace equipment. Zn/Cd alloying elements were prospected to improve the stability of the lightest Mg-Li based alloys; however, little is known about the intermediate-temperature mechanical properties of such alloys. The present work investigated the tensile behaviors of a cold-rolled Mg-Li-Al-Cd-Zn alloy in a temperature range of 30-150 °C. The results indicate that the alloy can host a tensile strength σUTS of 108~121 MPa, a yield strength σYP of 97~109 MPa and elongation εB of 14-15 % at 150 °C, dependent on the tensile direction. The mechanical properties intensively are modulated by temperature through the competition between work hardening and softening. Work hardening due to dislocation blocking by the precipitated MgLi2X phase dominated the deformation at low temperatures, while softening that resulted from dynamic recrystallization was the main effect at high temperatures. Correspondingly, a quasi-cleavage mechanism dominated the fracture at temperatures near room temperature, and microvoid coalescence worked at high temperatures above 100 °C. Our results offer a new experimental understanding of the elevated-temperature mechanical behaviors of Mg-Li alloys and will advance the development of new light magnesium alloys with high stability.

6.
Adv Mater ; 33(33): e2101845, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250646

RESUMO

One important goal of the current electrocatalysis is to develop integrated electrodes from the atomic level design to multilevel structural engineering in simple ways and low prices. Here, a series of oxygen micro-alloyed high-entropy alloys (O-HEAs) is developed via a metallurgy approach. A (CrFeCoNi)97 O3 bulk O-HEA shows exceptional electrocatalytic performance for the oxygen evolution reaction (OER), reaching an overpotential as low as 196 mV and a Tafel slope of 29 mV dec-1 , and with stability longer than 120 h in 1 m KOH solution at a current density of 10 mA cm-2 . It is shown that the enhanced OER performance can be attributed to the formation of island-like Cr2 O3 microdomains, the leaching of Cr3+ ions, and structural amorphization at the interfaces of the domains. These findings offer a technological-orientated strategy to integrated electrodes.

7.
Rev Sci Instrum ; 92(6): 064505, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243492

RESUMO

Estimating inertial measurement unit error without any external reference information has always been a difficult problem. The method based on the reconstruction of the gravitational apparent motion in the inertial frame can estimate the accelerometer bias, but a long identification time is needed to get high alignment accuracy. In order to reduce the convergence time and improve the accuracy of estimation, a fast estimation method based on repetitive navigation under the excitation of swing motion is proposed. Two data processing methods, the forward-forward loop and the backward-forward loop, are studied and compared in this paper. In addition, the influence of data length on the experiment result was analyzed. The simulation and experimental results show that the forward-forward loop calculation cannot solve the contradiction between speed and accuracy, while the backward-forward loop calculation can effectively estimate the accelerometer bias and realize self-alignment, with a short alignment time and high alignment accuracy.

8.
Plant Divers ; 43(6): 480-491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024517

RESUMO

Determining whether the high-latitude Bering land bridge (BLB) was ecologically suitable for the migration of mesothermal plants is significant for Holarctic phytogeographic inferences. Paleobotanical studies provide a critical source of data on the latitudinal positions of different plant lineages at different times, permitting assessment of the efficacy of the BLB for migration. Here we report exceptionally preserved fossils of Firmiana and Tilia endochrysea from the middle Miocene of South Korea. This represents a new reliable record of Firmiana and the first discovery of the T. endochrysea lineage in the fossil record of Asia. The occurrence of these fossils in South Korea indicates that the two lineages had a distribution that extended much farther north during the middle Miocene, but they were still geographically remote from the BLB. In light of the broader fossil record of Asia, our study shows that, in the middle Miocene, some mesothermal plants apparently inhabited the territory adjacent to the BLB and thus they were possibly capable of utilizing the BLB as a migratory corridor. Some other mesothermal plants, such as Firmiana and the T. endochrysea lineages, however, are restricted to more southern regions relative to the BLB based on current fossil evidence. These lineages may have been ecologically unable to traverse the BLB, which raises questions about the efficacy of the BLB as a universal exchange route for mesothermal plants between Asia and North America during the middle Miocene.

9.
Rev Sci Instrum ; 91(12): 125102, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379969

RESUMO

The initial alignment method, including the identification of inertial device error parameters, has always been a key issue in an inertial navigation system (INS). This study focuses on the error caused by the random noise of inertial devices that can be compensated by the reconstruction of gravitational apparent motion in an inertial frame under the condition of swinging motion. Attitude angles and accelerometer bias can also be estimated. However, the analysis and simulation results indicate that the existing methods cannot estimate the gyroscope bias. The accelerometer and the gyroscope bias will change over a long time, which will lead to long-term parameter identification accuracy decline or even failure. In this paper, a parameter identification algorithm based on Newton iterative optimization combined with a window loop calculation is designed to solve these problems. Simulation and turntable tests indicate that the proposed new algorithm can fulfill the initial alignment of strapdown INS under the swinging condition and estimate accelerometer bias effectively. Moreover, the new algorithm improves data utilization, which also has better time sensitivity, and the calculated alignment errors can nearly approach zero.

10.
Proc Natl Acad Sci U S A ; 117(52): 32989-32995, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288692

RESUMO

Tibet's ancient topography and its role in climatic and biotic evolution remain speculative due to a paucity of quantitative surface-height measurements through time and space, and sparse fossil records. However, newly discovered fossils from a present elevation of ∼4,850 m in central Tibet improve substantially our knowledge of the ancient Tibetan environment. The 70 plant fossil taxa so far recovered include the first occurrences of several modern Asian lineages and represent a Middle Eocene (∼47 Mya) humid subtropical ecosystem. The fossils not only record the diverse composition of the ancient Tibetan biota, but also allow us to constrain the Middle Eocene land surface height in central Tibet to ∼1,500 ± 900 m, and quantify the prevailing thermal and hydrological regime. This "Shangri-La"-like ecosystem experienced monsoon seasonality with a mean annual temperature of ∼19 °C, and frosts were rare. It contained few Gondwanan taxa, yet was compositionally similar to contemporaneous floras in both North America and Europe. Our discovery quantifies a key part of Tibetan Paleogene topography and climate, and highlights the importance of Tibet in regard to the origin of modern Asian plant species and the evolution of global biodiversity.

11.
Plant Divers ; 42(3): 155-167, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695948

RESUMO

East Asia has long been recognized as a major center for temperate woody plants diversity. Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region, the specific process remains unclear. Here we describe six species of Carpinus, a typical northern hemisphere temperate woody plant, from the early Miocene of the Maguan Basin, southwestern China, southern East Asia. This constitutes the southernmost, and the earliest occurrence that shows a high species diversity of the genus. Together with other Carpinus fossil records from East Asia, we show that the genus had achieved a high diversity in East Asia at least by the middle Miocene. Of the six species here described, three have become extinct, indicating that the genus has experienced apparent species loss during its evolutionary history in East Asia. In contrast, the remaining three species closely resemble extant species, raising the possibility that these species may have persisted in East Asia at least since the early Miocene. These findings indicate that the accumulation of species diversity of Carpinus in East Asia is a complex process involving extinction, persistence, and possible subsequent speciation.

12.
Data Brief ; 28: 104960, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31890801

RESUMO

The data in this article is the supplementary data of the research article entitled "Comparable magnetocaloric properties of melt-extracted Gd36Tb20Co20Al24 metallic glass microwires" (Yin et al., 2020). The data shows the circular cross section of Gd36Tb20Co20Al24 metallic glass microwires with a diameter of ∼55 µm. The data also shows that the chemical compositions of microwires are basically uniform on macro-scale and micro-scale.

13.
Ann Bot ; 123(7): 1147-1158, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861064

RESUMO

BACKGROUND AND AIMS: The inverse correlation between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many plants has been widely used to estimate palaeo-CO2 levels. However, apparent discrepancies exist among the obtained estimates. This study attempts to find a potential proxy for palaeo-CO2 concentrations by analysing the stomatal frequency of Quercus glauca (section Cyclobalanopsis, Fagaceae), a dominant species in East Asian sub-tropical forests with abundant fossil relatives. METHODS: Stomatal frequencies of Q. glauca from three material sources were analysed: seedlings grown in four climatic chambers with elevated CO2 ranging from 400 to 1300 ppm; extant samples collected from 14 field sites at altitudes ranging from 142 to 1555 m; and 18 herbarium specimens collected between 1930 and 2011. Stomatal frequency-pCO2 correlations were determined using samples from these three sources. KEY RESULTS: An inverse correlation between stomatal frequency and pCO2 was found for Q. glauca through cross-validation of the three material sources. The combined calibration curves integrating data of extant altitudinal samples and historical herbarium specimens improved the reliability and accuracy of the curves. However, materials in the climatic chambers exhibited a weak response and relatively high stomatal frequency possibly due to insufficient treatment time. CONCLUSIONS: A new inverse stomatal frequency-pCO2 correlation for Q. glauca was determined using samples from three sources. These three material types show the same response, indicating that Q. glauca is sensitive to atmospheric pCO2 and is an ideal proxy for palaeo-CO2 levels. Quercus glauca is a nearest living relative (NLR) of section Cyclobalanopsis fossils, which are widely distributed in the strata of East Asia ranging from the Eocene to Pliocene, thereby providing excellent materials to reconstruct the atmospheric CO2 concentration history of the Cenozoic. Quercus glauca will add to the variety of proxies that can be widely used in addition to Ginkgo and Metasequoia.


Assuntos
Quercus , Dióxido de Carbono , Ásia Oriental , Fósseis , Folhas de Planta , Reprodutibilidade dos Testes
14.
Rev Sci Instrum ; 90(1): 015102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709168

RESUMO

Field calibration is an important method to guarantee the accuracy of a strapdown inertial navigation system. Zero velocity update based on the zero-velocity constraint when the carrier is without translational motion is a typical system-level calibration method. In zero velocity update, there is a coupling between biases and horizontal misalignment angles. The accuracy of horizontal misalignment angles is determined by the equivalent accelerometer biases in horizontal directions, which means that improving the accuracy of horizontal angles needs accurate calibration of accelerometer biases. Meanwhile, alignment with gravitational apparent motion is widely used taking advantages of its alignment ability in a swinging condition. But it is an analytical method and cannot calibrate sensor biases and is always dealt as a coarse alignment method. In order to calibrate accelerometer biases and utilize advantages of the alignment method with gravitational motion, a method to estimate accelerometer biases based on an iterative optimization method and gravitational apparent motion is presented in this paper. First, accelerometer biases are introduced to calculate apparent acceleration and an objective function is constructed. Then, Newton's iteration is applied to iteratively optimize the parameters describing gravitational apparent motion and accelerometer biases. As revealed by the theoretical analysis and experimental results, different patterns of gravity and accelerometer biases will be generated when the carrier exhibits a swinging motion; thus, the convergence of the proposed algorithm will be ensured. After accelerometer biases are removed, initial alignment performed with the gravitational apparent motion reconstructed by the estimated parameters gives nearly zero horizontal misalignment angles.

15.
Natl Sci Rev ; 6(3): 495-504, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691898

RESUMO

The uplift history of south-eastern Tibet is crucial to understanding processes driving the tectonic evolution of the Tibetan Plateau and surrounding areas. Underpinning existing palaeoaltimetric studies has been regional mapping based in large part on biostratigraphy that assumes a Neogene modernization of the highly diverse, but threatened, Asian biota. Here, with new radiometric dating and newly collected plant-fossil archives, we quantify the surface height of part of the south-eastern margin of Tibet in the latest Eocene (∼34 Ma) to be ∼3 km and rising, possibly attaining its present elevation (3.9 km) in the early Oligocene. We also find that the Eocene-Oligocene transition in south-eastern Tibet witnessed leaf-size diminution and a floral composition change from sub-tropical/warm temperate to cool temperate, likely reflective of both uplift and secular climate change, and that, by the latest Eocene, floral modernization on Tibet had already taken place, implying modernization was deeply rooted in the Palaeogene.

16.
Sci Rep ; 7(1): 16882, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203802

RESUMO

Contrary to crystalline solids, amorphous solids always become softer when vitrifying the melts under higher cooling rates. Understanding this phenomenon is of utmost importance in providing a basis for the mechanical-performance control of amorphous solids. However, the underlying mechanisms leading to this cooling-rate-induced softening of amorphous solids have remained elusive, especially the dynamic reasons are neglected. Here, we use a colloidal glass as the model system to directly study this issue. Shear modulus is used as the representative parameter to monitor the stress-bearing properties of colloidal glass. The space-spanning immobile particles, whose population is sensitive to the cooling rate, are found to make the dominant contribution to the shear modulus. The rapid solidification induced softening of colloidal glass is observed to originate from fewer immobile particles formed at higher cooling rates.

17.
Sci Rep ; 6: 30674, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27471073

RESUMO

Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 µm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

18.
Plant Divers ; 38(3): 125-132, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30159456

RESUMO

Eurya has an excellent fossil record in Europe, but it has only a few fossil occurrences in East Asia though this vast area houses the highest modern diversity of the genus. In this study, three-dimensionally preserved fossil seeds of Eurya stigmosa (Ludwig) Mai from the late Pliocene of northwestern Yunnan, southwestern China are described. The seeds are compressed and flattened, slightly campylotropous, and nearly circular to slightly angular in shape. The surface of the seeds is sculptured by a distinctive foveolate pattern, consisting of funnel-shaped and finely pitted cells. Each seed valve contains a reniform or horseshoe-shaped embryo cavity, a characteristic condyle structure and an internal raphe. These fossil seeds represent one of the few fossil records of Eurya in East Asia. This new finding therefore largely extends the distributional ranges of Eurya during Neogene. Fossil records summarized here show that Eurya persisted in Europe until the early Pleistocene, but disappeared thereafter. The genus might have first appeared in East Asia no later than the late Oligocene, and dispersed widely in regions such as Japan, Nepal, and southwestern China.

19.
Plant Divers ; 38(4): 194-200, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30159465

RESUMO

The palaeodiversity of flowering plants in Yunnan has been extensively interpreted from both a molecular and fossil perspective. However, for cryptogamic plants such as ferns, the palaeodiversity remains poorly known. In this study, we describe a new ferny fossil taxon, Drynaria lanpingensis sp. nov. Huang, Su et Zhou (Polypodiaceae), from the late Pliocene of northwestern Yunnan based on fragmentary frond and pinna with in situ spores. The frond is pinnatifid and the pinnae are entirely margined. The sori are arranged in one row on each side of the primary vein. The spores have a semicircular to bean-shaped equatorial view and a tuberculate surface. Taken together with previously described fossils, there are now representatives of three known fossil taxa of Drynaria from the late Pliocene of western Yunnan. These finds suggest that Drynaria diversity was considerable in the region at that time. As Drynaria is a shade-tolerant plant, growing preferably in wet conditions in the understory of forests, its extensive existence may indicate forest vegetation and humid climates in western Yunnan during the late Pliocene. This is in line with results from floristic investigations and palaeoclimatic reconstructions based on fossil floras.

20.
Plant Divers ; 38(6): 271-282, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159478

RESUMO

Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo-Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...