Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38787664

RESUMO

The advent of single-cell RNA sequencing (scRNA-seq) has brought forth fresh perspectives on intricate biological processes, revealing the nuances and divergences present among distinct cells. Accurate single-cell analysis is a crucial prerequisite for in-depth investigation into the underlying mechanisms of heterogeneity. Due to various technical noises, like the impact of dropout values, scRNA-seq data remains challenging to interpret. In this work, we propose an unsupervised learning framework for scRNA-seq data analysis (aka Sc-GNNMF). Based on the non-negativity and sparsity of scRNA-seq data, we propose employing graph-regularized non-negative matrix factorization (GNNMF) algorithm for the analysis of scRNA-seq data, which involves estimating cell-cell similarity and gene-gene similarity through Laplacian kernels and p-nearest neighbor graphs ( p-NNG). By assuming intrinsic geometric local invariance, we use a weighted p-nearest known neighbors ( p-NKN) of cell-cell interactions to guide the matrix decomposition process, promoting the closeness of cells with similar types in cell-gene data space and determining a more suitable embedding space for clustering. Sc-GNNMF demonstrates superior performance compared to other methods and maintains satisfactory compatibility and robustness, as evidenced by experiments on 11 real scRNA-seq datasets. Furthermore, Sc-GNNMF yields excellent results in clustering tasks, extracting useful gene markers, and pseudo-temporal analysis.

2.
IEEE J Biomed Health Inform ; 28(7): 4281-4294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38557614

RESUMO

As post-transcriptional regulators of gene expression, micro-ribonucleic acids (miRNAs) are regarded as potential biomarkers for a variety of diseases. Hence, the prediction of miRNA-disease associations (MDAs) is of great significance for an in-depth understanding of disease pathogenesis and progression. Existing prediction models are mainly concentrated on incorporating different sources of biological information to perform the MDA prediction task while failing to consider the fully potential utility of MDA network information at the motif-level. To overcome this problem, we propose a novel motif-aware MDA prediction model, namely MotifMDA, by fusing a variety of high- and low-order structural information. In particular, we first design several motifs of interest considering their ability to characterize how miRNAs are associated with diseases through different network structural patterns. Then, MotifMDA adopts a two-layer hierarchical attention to identify novel MDAs. Specifically, the first attention layer learns high-order motif preferences based on their occurrences in the given MDA network, while the second one learns the final embeddings of miRNAs and diseases through coupling high- and low-order preferences. Experimental results on two benchmark datasets have demonstrated the superior performance of MotifMDA over several state-of-the-art prediction models. This strongly indicates that accurate MDA prediction can be achieved by relying solely on MDA network information. Furthermore, our case studies indicate that the incorporation of motif-level structure information allows MotifMDA to discover novel MDAs from different perspectives.


Assuntos
Biologia Computacional , MicroRNAs , MicroRNAs/genética , Humanos , Biologia Computacional/métodos , Predisposição Genética para Doença/genética , Algoritmos
3.
IEEE J Biomed Health Inform ; 28(4): 1917-1926, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37801389

RESUMO

Protein methylation is one of the most important reversible post-translational modifications (PTMs), playing a vital role in the regulation of gene expression. Protein methylation sites serve as biomarkers in cardiovascular and pulmonary diseases, influencing various aspects of normal cell biology and pathogenesis. Nonetheless, the majority of existing computational methods for predicting protein methylation sites (PMSP) have been constructed based on protein sequences, with few methods leveraging the topological information of proteins. To address this issue, we propose an innovative framework for predicting Methylation Sites using Graphs (GraphMethySite) that employs graph convolution network in conjunction with Bayesian Optimization (BO) to automatically discover the graphical structure surrounding a candidate site and improve the predictive accuracy. In order to extract the most optimal subgraphs associated with methylation sites, we extend GraphMethySite by coupling it with a hybrid Bayesian optimization (together named GraphMethySite +) to determine and visualize the topological relevance among amino-acid residues. We evaluated our framework on two extended protein methylation datasets, and empirical results demonstrate that it outperforms existing state-of-the-art methylation prediction methods.


Assuntos
Lisina , Proteínas , Humanos , Lisina/química , Lisina/metabolismo , Teorema de Bayes , Proteínas/química , Metilação , Processamento de Proteína Pós-Traducional , Biologia Computacional/métodos
4.
Commun Biol ; 6(1): 1268, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097699

RESUMO

Recent developments in single-cell technology have enabled the exploration of cellular heterogeneity at an unprecedented level, providing invaluable insights into various fields, including medicine and disease research. Cell type annotation is an essential step in its omics research. The mainstream approach is to utilize well-annotated single-cell data to supervised learning for cell type annotation of new singlecell data. However, existing methods lack good generalization and robustness in cell annotation tasks, partially due to difficulties in dealing with technical differences between datasets, as well as not considering the heterogeneous associations of genes in regulatory mechanism levels. Here, we propose the scPML model, which utilizes various gene signaling pathway data to partition the genetic features of cells, thus characterizing different interaction maps between cells. Extensive experiments demonstrate that scPML performs better in cell type annotation and detection of unknown cell types from different species, platforms, and tissues.


Assuntos
Medicina , Análise da Expressão Gênica de Célula Única , Transdução de Sinais , Tecnologia
5.
Brief Funct Genomics ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37539561

RESUMO

Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA-miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.

6.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505483

RESUMO

MOTIVATION: The task of predicting drug-target interactions (DTIs) plays a significant role in facilitating the development of novel drug discovery. Compared with laboratory-based approaches, computational methods proposed for DTI prediction are preferred due to their high-efficiency and low-cost advantages. Recently, much attention has been attracted to apply different graph neural network (GNN) models to discover underlying DTIs from heterogeneous biological information network (HBIN). Although GNN-based prediction methods achieve better performance, they are prone to encounter the over-smoothing simulation when learning the latent representations of drugs and targets with their rich neighborhood information in HBIN, and thereby reduce the discriminative ability in DTI prediction. RESULTS: In this work, an improved graph representation learning method, namely iGRLDTI, is proposed to address the above issue by better capturing more discriminative representations of drugs and targets in a latent feature space. Specifically, iGRLDTI first constructs an HBIN by integrating the biological knowledge of drugs and targets with their interactions. After that, it adopts a node-dependent local smoothing strategy to adaptively decide the propagation depth of each biomolecule in HBIN, thus significantly alleviating over-smoothing by enhancing the discriminative ability of feature representations of drugs and targets. Finally, a Gradient Boosting Decision Tree classifier is used by iGRLDTI to predict novel DTIs. Experimental results demonstrate that iGRLDTI yields better performance that several state-of-the-art computational methods on the benchmark dataset. Besides, our case study indicates that iGRLDTI can successfully identify novel DTIs with more distinguishable features of drugs and targets. AVAILABILITY AND IMPLEMENTATION: Python codes and dataset are available at https://github.com/stevejobws/iGRLDTI/.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Simulação por Computador , Descoberta de Drogas/métodos , Interações Medicamentosas
7.
PLoS Comput Biol ; 19(6): e1011207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339154

RESUMO

Interactions between transcription factor and target gene form the main part of gene regulation network in human, which are still complicating factors in biological research. Specifically, for nearly half of those interactions recorded in established database, their interaction types are yet to be confirmed. Although several computational methods exist to predict gene interactions and their type, there is still no method available to predict them solely based on topology information. To this end, we proposed here a graph-based prediction model called KGE-TGI and trained in a multi-task learning manner on a knowledge graph that we specially constructed for this problem. The KGE-TGI model relies on topology information rather than being driven by gene expression data. In this paper, we formulate the task of predicting interaction types of transcript factor and target genes as a multi-label classification problem for link types on a heterogeneous graph, coupled with solving another link prediction problem that is inherently related. We constructed a ground truth dataset as benchmark and evaluated the proposed method on it. As a result of the 5-fold cross experiments, the proposed method achieved average AUC values of 0.9654 and 0.9339 in the tasks of link prediction and link type classification, respectively. In addition, the results of a series of comparison experiments also prove that the introduction of knowledge information significantly benefits to the prediction and that our methodology achieve state-of-the-art performance in this problem.


Assuntos
Reconhecimento Automatizado de Padrão , Fatores de Transcrição , Humanos , Bases de Dados Factuais , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Proteoma , Algoritmos , Biologia de Sistemas , Ontologia Genética
8.
BMC Bioinformatics ; 24(1): 188, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158823

RESUMO

BACKGROUND: The limited knowledge of miRNA-lncRNA interactions is considered as an obstruction of revealing the regulatory mechanism. Accumulating evidence on Human diseases indicates that the modulation of gene expression has a great relationship with the interactions between miRNAs and lncRNAs. However, such interaction validation via crosslinking-immunoprecipitation and high-throughput sequencing (CLIP-seq) experiments that inevitably costs too much money and time but with unsatisfactory results. Therefore, more and more computational prediction tools have been developed to offer many reliable candidates for a better design of further bio-experiments. METHODS: In this work, we proposed a novel link prediction model based on Gaussian kernel-based method and linear optimization algorithm for inferring miRNA-lncRNA interactions (GKLOMLI). Given an observed miRNA-lncRNA interaction network, the Gaussian kernel-based method was employed to output two similarity matrixes of miRNAs and lncRNAs. Based on the integrated matrix combined with similarity matrixes and the observed interaction network, a linear optimization-based link prediction model was trained for inferring miRNA-lncRNA interactions. RESULTS: To evaluate the performance of our proposed method, k-fold cross-validation (CV) and leave-one-out CV were implemented, in which each CV experiment was carried out 100 times on a training set generated randomly. The high area under the curves (AUCs) at 0.8623 ± 0.0027 (2-fold CV), 0.9053 ± 0.0017 (5-fold CV), 0.9151 ± 0.0013 (10-fold CV), and 0.9236 (LOO-CV), illustrated the precision and reliability of our proposed method. CONCLUSION: GKLOMLI with high performance is anticipated to be used to reveal underlying interactions between miRNA and their target lncRNAs, and deciphers the potential mechanisms of the complex diseases.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Projetos de Pesquisa , Algoritmos , MicroRNAs/genética
9.
IEEE J Biomed Health Inform ; 27(1): 573-582, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301791

RESUMO

Identifying protein targets for drugs establishes an indispensable knowledge foundation for drug repurposing and drug development. Though expensive and time-consuming, vitro trials are widely employed to discover drug targets, and the existing relevant computational algorithms still cannot satisfy the demand for real application in drug R&D with regards to the prediction accuracy and performance efficiency, which are urgently needed to be improved. To this end, we propose here the PPAEDTI model, which uses the graph personalized propagation technique to predict drug-target interactions from the known interaction network. To evaluate the prediction performance, six benchmark datasets were used for testing with some state-of-the-art methods compared. As a result, using the 5-fold cross-validation, the proposed PPAEDTI model achieves average AUCs>90% on 5 collected datasets. We also manually checked the top-20 prediction list for 2 proteins (hsa:775 and hsa:779) and a kind of drug (D00618), and successfully confirmed 18, 17, and 20 items from the public datasets, respectively. The experimental results indicate that, given known drug-target interactions, the PPAEDTI model can provide accurate predictions for the new ones, which is anticipated to serve as a useful tool for pharmacology research. Using the proposed model that was trained with the collected datasets, we have built a computational platform that is accessible at http://120.77.11.78/PPAEDTI/ and corresponding codes and datasets are also released.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Humanos , Interações Medicamentosas , Área Sob a Curva , Proteínas/metabolismo
10.
BMC Bioinformatics ; 23(Suppl 7): 518, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457083

RESUMO

BACKGROUND: Self-interacting proteins (SIPs), two or more copies of the protein that can interact with each other expressed by one gene, play a central role in the regulation of most living cells and cellular functions. Although numerous SIPs data can be provided by using high-throughput experimental techniques, there are still several shortcomings such as in time-consuming, costly, inefficient, and inherently high in false-positive rates, for the experimental identification of SIPs even nowadays. Therefore, it is more and more significant how to develop efficient and accurate automatic approaches as a supplement of experimental methods for assisting and accelerating the study of predicting SIPs from protein sequence information. RESULTS: In this paper, we present a novel framework, termed GLCM-WSRC (gray level co-occurrence matrix-weighted sparse representation based classification), for predicting SIPs automatically based on protein evolutionary information from protein primary sequences. More specifically, we firstly convert the protein sequence into Position Specific Scoring Matrix (PSSM) containing protein sequence evolutionary information, exploiting the Position Specific Iterated BLAST (PSI-BLAST) tool. Secondly, using an efficient feature extraction approach, i.e., GLCM, we extract abstract salient and invariant feature vectors from the PSSM, and then perform a pre-processing operation, the adaptive synthetic (ADASYN) technique, to balance the SIPs dataset to generate new feature vectors for classification. Finally, we employ an efficient and reliable WSRC model to identify SIPs according to the known information of self-interacting and non-interacting proteins. CONCLUSIONS: Extensive experimental results show that the proposed approach exhibits high prediction performance with 98.10% accuracy on the yeast dataset, and 91.51% accuracy on the human dataset, which further reveals that the proposed model could be a useful tool for large-scale self-interacting protein prediction and other bioinformatics tasks detection in the future.


Assuntos
Evolução Biológica , Biologia Computacional , Humanos , Sequência de Aminoácidos , Matrizes de Pontuação de Posição Específica , Leucócitos , Saccharomyces cerevisiae/genética
11.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35511108

RESUMO

MOTIVATION: Interaction between transcription factor (TF) and its target genes establishes the knowledge foundation for biological researches in transcriptional regulation, the number of which is, however, still limited by biological techniques. Existing computational methods relevant to the prediction of TF-target interactions are mostly proposed for predicting binding sites, rather than directly predicting the interactions. To this end, we propose here a graph attention-based autoencoder model to predict TF-target gene interactions using the information of the known TF-target gene interaction network combined with two sequential and chemical gene characters, considering that the unobserved interactions between transcription factors and target genes can be predicted by learning the pattern of the known ones. To the best of our knowledge, the proposed model is the first attempt to solve this problem by learning patterns from the known TF-target gene interaction network. RESULTS: In this paper, we formulate the prediction task of TF-target gene interactions as a link prediction problem on a complex knowledge graph and propose a deep learning model called GraphTGI, which is composed of a graph attention-based encoder and a bilinear decoder. We evaluated the prediction performance of the proposed method on a real dataset, and the experimental results show that the proposed model yields outstanding performance with an average AUC value of 0.8864 +/- 0.0057 in the 5-fold cross-validation. It is anticipated that the GraphTGI model can effectively and efficiently predict TF-target gene interactions on a large scale. AVAILABILITY: Python code and the datasets used in our studies are made available at https://github.com/YanghanWu/GraphTGI.


Assuntos
Redes Neurais de Computação
12.
Front Chem ; 10: 902814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615312

RESUMO

Hydrogen production by electrolyzing water is an important technique to store energy from renewables into chemical energy. Many efforts have been made to improve the energy conversion efficiency. In this review article, we mainly summarized the emerging ideas on water oxidation by multi-energy coupling. First, the physicochemical nature of electrolyzing water reaction is described. Then, we conceptually proposed the physical basis of energy coupling with a goal to maximize the energy conversion efficiency and showed the methods to achieve heat-electricity and magnetism-electricity coupling to drive water splitting. Finally, the material requirements for creating efficient energy coupling water splitting system were proposed. These new ideas unlock a big potential direction for developing multi-energy coupling hydrogen production devices to efficiently store the intermittent and fluctuating renewables.

14.
BMC Genomics ; 22(Suppl 1): 916, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296232

RESUMO

BACKGROUND: Recent evidences have suggested that human microorganisms participate in important biological activities in the human body. The dysfunction of host-microbiota interactions could lead to complex human disorders. The knowledge on host-microbiota interactions can provide valuable insights into understanding the pathological mechanism of diseases. However, it is time-consuming and costly to identify the disorder-specific microbes from the biological "haystack" merely by routine wet-lab experiments. With the developments in next-generation sequencing and omics-based trials, it is imperative to develop computational prediction models for predicting microbe-disease associations on a large scale. RESULTS: Based on the known microbe-disease associations derived from the Human Microbe-Disease Association Database (HMDAD), the proposed model shows reliable performance with high values of the area under ROC curve (AUC) of 0.9456 and 0.8866 in leave-one-out cross validations and five-fold cross validations, respectively. In case studies of colorectal carcinoma, 80% out of the top-20 predicted microbes have been experimentally confirmed via published literatures. CONCLUSION: Based on the assumption that functionally similar microbes tend to share the similar interaction patterns with human diseases, we here propose a group based computational model of Bayesian disease-oriented ranking to prioritize the most potential microbes associating with various human diseases. Based on the sequence information of genes, two computational approaches (BLAST+ and MEGA 7) are leveraged to measure the microbe-microbe similarity from different perspectives. The disease-disease similarity is calculated by capturing the hierarchy information from the Medical Subject Headings (MeSH) data. The experimental results illustrate the accuracy and effectiveness of the proposed model. This work is expected to facilitate the characterization and identification of promising microbial biomarkers.


Assuntos
Algoritmos , Bactérias/classificação , Biologia Computacional , RNA Ribossômico 16S , Teorema de Bayes , Biologia Computacional/métodos , Genes de RNAr , Humanos , RNA Ribossômico 16S/genética
15.
Bioinformatics ; 38(9): 2554-2560, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35266510

RESUMO

MOTIVATION: Identifying the target genes of transcription factors (TFs) is of great significance for biomedical researches. However, using biological experiments to identify TF-target gene interactions is still time consuming, expensive and limited to small scale. Existing computational methods for predicting underlying genes for TF to target is mainly proposed for their binding sites rather than the direct interaction. To bridge this gap, we in this work proposed a deep learning prediction model, named HGETGI, to identify the new TF-target gene interaction. Specifically, the proposed HGETGI model learns the patterns of the known interaction between TF and target gene complemented with their involvement in different human disease mechanisms. It performs prediction based on random walk for meta-path sampling and node embedding in a skip-gram manner. RESULTS: We evaluated the prediction performance of the proposed method on a real dataset and the experimental results show that it can achieve the average area under the curve of 0.8519 ± 0.0731 in fivefold cross validation. Besides, we conducted case studies on the prediction of two important kinds of TF, NFKB1 and TP53. As a result, 33 and 32 in the top-40 ranking lists of NFKB1 and TP53 were successfully confirmed by looking up another public database (hTftarget). It is envisioned that the proposed HGETGI method is feasible and effective for predicting TF-target gene interactions on a large scale. AVAILABILITY AND IMPLEMENTATION: The source code and dataset are available at https://github.com/PGTSING/HGETGI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Fatores de Transcrição , Humanos , Sítios de Ligação , Fatores de Transcrição/metabolismo
16.
Front Physiol ; 12: 708588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899365

RESUMO

Background: This study explored the influences of electroacupuncture combined with dietary intervention on the intestinal flora in perimenopausal patients with abdominal obesity by using the 16s rRNA sequencing technology. Methods: Perimenopausal patients with abdominal obesity were divided into the Electroacupuncture group and the Control group. Patients in the Control group received healthy lifestyle education, while those in the Electroacupuncture group received electroacupuncture combined with dietary intervention. Before and after treatment, the weight, height, waist circumference, hip circumference, waist-height ratio (WHtR), waist to hip ratio (WHR), and body mass index (BMI) of the patients were recorded; the levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein cholesterol (HDL-C), fasting insulin (FINS), and fasting blood glucose (FGB) were evaluated; and the abundance, diversity, and species differences of intestinal flora were analyzed using 16s rRNA sequencing technology. Results: The body weight, waist circumference, hip circumference, BMI, WHR, and WHtR of patients in the Electroacupuncture group after treatment were lower than those before treatment. Compared with the Control group, patients in the Electroacupuncture group after treatment displayed lower waist circumference, WHtR, WHR, TG, and LDL levels as well as species abundance, higher species diversity, and lager species difference in the intestinal flora. Besides, the proportions of Klebsiella and Kosakonia in the intestinal flora of patients in the Electroacupuncture group after treatment were larger than those before treatment. Conclusion: Electroacupuncture combined with diet treatment generated a therapeutic effect on abdominal obesity in perimenopausal patients by improving the community structure of intestinal flora.

17.
BMC Med Inform Decis Mak ; 21(Suppl 1): 308, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736437

RESUMO

BACKGROUND: Disease-drug associations provide essential information for drug discovery and disease treatment. Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-consuming and expensive. To better understand and explore these valuable associations, it would be useful to develop computational methods for predicting unobserved disease-drug associations. With the advent of various datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correlation between disease and drugs. RESULTS: In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the association score of each pair of diseases and drugs in the database. This method achieves good performance on Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational models. CONCLUSIONS: The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse multiple similar networks and combine matrix complement technology to predict potential association. We have demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for drug repositioning.


Assuntos
Biologia Computacional , Preparações Farmacêuticas , Algoritmos , Bases de Dados Factuais , Descoberta de Drogas , Reposicionamento de Medicamentos
18.
Front Microbiol ; 12: 735329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512614

RESUMO

Proteins are one of most significant components in living organism, and their main role in cells is to undertake various physiological functions by interacting with each other. Thus, the prediction of protein-protein interactions (PPIs) is crucial for understanding the molecular basis of biological processes, such as chronic infections. Given the fact that laboratory-based experiments are normally time-consuming and labor-intensive, computational prediction algorithms have become popular at present. However, few of them could simultaneously consider both the structural information of PPI networks and the biological information of proteins for an improved accuracy. To do so, we assume that the prior information of functional modules is known in advance and then simulate the generative process of a PPI network associated with the biological information of proteins, i.e., Gene Ontology, by using an established Bayesian model. In order to indicate to what extent two proteins are likely to interact with each other, we propose a novel scoring function by combining the membership distributions of proteins with network paths. Experimental results show that our algorithm has a promising performance in terms of several independent metrics when compared with state-of-the-art prediction algorithms, and also reveal that the consideration of modularity in PPI networks provides us an alternative, yet much more flexible, way to accurately predict PPIs.

19.
Front Biosci (Landmark Ed) ; 26(7): 222-234, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34340269

RESUMO

Introduction: The prediction of interacting drug-target pairs plays an essential role in the field of drug repurposing, and drug discovery. Although biotechnology and chemical technology have made extraordinary progress, the process of dose-response experiments and clinical trials is still extremely complex, laborious, and costly. As a result, a robust computer-aided model is of an urgent need to predict drug-target interactions (DTIs). Methods: In this paper, we report a novel computational approach combining fuzzy local ternary pattern (FLTP), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) to identify DTIs. More specially, the target primary sequence is first numerically characterized into PSSM which records the biological evolution information. Afterward, the FLTP method is applied in extracting the highly representative descriptors of PSSM, and the combinations of FLTP descriptors and drug molecular fingerprints are regarded as the complete features of drug-target pairs. Results: Finally, the entire features are fed into rotation forests for inferring potential DTIs. The experiments of 5-fold cross-validation (CV) achieve mean accuracies of 89.08%, 86.14%, 82.41%, and 78.40% on Enzyme, Ion Channel, GPCRs, and Nuclear Receptor datasets. Discussion: For further validating the model performance, we performed experiments with the state-of-art support vector machine (SVM) and light gradient boosting machine (LGBM). The experimental results indicate the superiorities of the proposed model in effectively and reliably detect potential DTIs. There is an anticipation that the proposed model can establish a feasible and convenient tool to identify high-throughput identification of DTIs.


Assuntos
Preparações Farmacêuticas , Máquina de Vetores de Suporte , Biologia Computacional , Bases de Dados de Proteínas , Interações Medicamentosas , Matrizes de Pontuação de Posição Específica
20.
Biomed Res Int ; 2021: 9933873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987446

RESUMO

Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition. Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be expensive, laborious, and intricate. Therefore, a convenient and reliable computer-aided method has become the focus on inferring drug-target interactions (DTIs). In this research, we propose a novel computational model integrating a pyramid histogram of oriented gradients (PHOG), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) classifier for identifying DTIs. Specifically, protein primary sequences are first converted into PSSMs to describe the potential biological evolution information. After that, PHOG is employed to mine the highly representative features of PSSM from multiple pyramid levels, and the complete describers of drug-target pairs are generated by combining the molecular substructure fingerprints and PHOG features. Finally, we feed the complete describers into the RF classifier for effective prediction. The experiments of 5-fold Cross-Validations (CV) yield mean accuracies of 88.96%, 86.37%, 82.88%, and 76.92% on four golden standard data sets (enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively). Moreover, the paper also conducts the state-of-art light gradient boosting machine (LGBM) and support vector machine (SVM) to further verify the performance of the proposed model. The experimental outcomes substantiate that the established model is feasible and reliable to predict DTIs. There is an excellent prospect that our model is capable of predicting DTIs as an efficient tool on a large scale.


Assuntos
Sequência de Aminoácidos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Interações Medicamentosas , Aprendizado de Máquina , Bases de Dados de Proteínas , Matrizes de Pontuação de Posição Específica , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...