Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian J Androl ; 25(3): 366-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35915542

RESUMO

Studies have investigated the effects of androgen deprivation therapy (ADT) use on the incidence and clinical outcomes of coronavirus disease 2019 (COVID-19); however, the results have been inconsistent. We searched the PubMed, Medline, Cochrane, Scopus, and Web of Science databases from inception to March 2022; 13 studies covering 84 003 prostate cancer (PCa) patients with or without ADT met the eligibility criteria and were included in the meta-analysis. We calculated the pooled risk ratios (RRs) with 95% confidence intervals (CIs) to explore the association between ADT use and the infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severity of COVID-19. After synthesizing the evidence, the pooled RR in the SARS-CoV-2 positive group was equal to 1.17, and the SARS-CoV-2 positive risk in PCa patients using ADT was not significantly different from that in those not using ADT (P = 0.544). Moreover, no significant results concerning the beneficial effect of ADT on the rate of intensive care unit admission (RR = 1.04, P = 0.872) or death risk (RR = 1.23, P = 0.53) were found. However, PCa patients with a history of ADT use had a markedly higher COVID-19 hospitalization rate (RR = 1.31, P = 0.015) than those with no history of ADT use. These findings indicate that ADT use by PCa patients is associated with a high risk of hospitalization during infection with SARS-CoV-2. A large number of high quality studies are needed to confirm these results.


Assuntos
COVID-19 , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/induzido quimicamente , Antagonistas de Androgênios/efeitos adversos , Androgênios/uso terapêutico , SARS-CoV-2
2.
J Agric Food Chem ; 69(28): 7938-7947, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34237214

RESUMO

A novel cell-free biosynthesis system based on a mixture of chassis cell extracts and purified Spy-cyclized enzymes (CFBS-mixture) was developed. As a demonstration, the CFBS-mixture was applied to chlorogenic acid (CGA) biosynthesis. The mix-and-match and Plackett-Burman experiments demonstrated that Lonicera japonica hydroxycinnamate-CoA quinate transferase and p-hydroxyphenylacetate 3-hydroxylase were the key enzymes for the production of CGA. After optimization of the concentrations of the biosynthetic enzymes in the CFBS-mixture reaction using the Plackett-Burman experimental design and the path of the steepest ascent, 711.26 ± 15.63 mg/L CGA was produced after 16 h, which is 71.1-fold the yield obtained using the conventional crude extract-based CFBS and 9.1-fold the reported yield obtained using the living cells. Based on the CFBS-mixture results, the production of CGA was further enhanced in engineered Escherichia coli. The CFBS-mixture strategy is highly effective and will be useful for high-level CFBS of natural products.


Assuntos
Ácido Clorogênico , Lonicera , Extratos Celulares , Ácido Quínico
3.
J Agric Food Chem ; 68(42): 11765-11773, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33030899

RESUMO

Here, we first developed a combined strain improvement strategy of biosensor-guided atmospheric and room-temperature plasma mutagenesis and genome shuffling. Application of this strategy resulted in a 2.7-fold increase in the production of shikimic acid (SA) and a 2.0-fold increase in growth relative to those of the starting strain. Whole-cell resequencing of the shuffled strain and confirmation using CRISPRa/CRISPRi revealed that some membrane protein-related mutant genes are identified as being closely related to the higher SA titer. The engineered shuffling strain produced 18.58 ± 0.56 g/L SA from glucose with a yield of 68% (mol/mol) by fed-batch whole-cell biocatalysis, achieving 79% of the theoretical maximum. Sucrose-utilizing Escherichia coli was engineered for SA production by introducing Mannheimia succiniciproducens ß-fructofuranosidase gene. The resulting sucrose-utilizing E. coli strain produced 24.64 ± 0.32 g/L SA from sucrose with a yield of 1.42 mol/mol by fed-batch whole-cell biocatalysis, achieving 83% of the theoretical maximum.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Chiquímico/metabolismo , Sacarose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Embaralhamento de DNA , Engenharia Metabólica , Mutagênese , Pasteurellaceae/enzimologia , Pasteurellaceae/genética , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32432104

RESUMO

Aromatic compounds derived from aromatic amino acids are an important class of diverse chemicals with a wide range of industrial and commercial applications. They are currently produced via petrochemical processes, which are not sustainable and eco-friendly. In the past decades, significant progress has been made in the construction of microbial cell factories capable of effectively converting renewable carbon sources into value-added aromatics. Here, we systematically and comprehensively review the recent advancements in metabolic engineering and synthetic biology in the microbial production of aromatic amino acid derivatives, stilbenes, and benzylisoquinoline alkaloids. The future outlook concerning the engineering of microbial cell factories for the production of aromatic compounds is also discussed.

5.
J Agric Food Chem ; 68(7): 2139-2145, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973519

RESUMO

α-Pinene is an important monoterpene that is widely used as a pharmaceutical product, biofuel, and so forth. We first established a cell-free system with modular cocatalysis for the production of pinene from glucose. After optimization of the compositions of the cell-free reaction mixture using the Plackett-Burman experimental design and the path of steepest ascent, the production of pinene increased by 57%. It was found that ammonium acetate, NAD+, and NADPH are the three most important parameters for the production of pinene. Mix-and-match experiments showed that the simultaneous addition of the lysate of Escherichia coli overexpressing native 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, SufBCD Fe-S cluster assembly protein, isopentenyl-diphosphate isomerase, and Pinus taeda pinene synthase improved the production of pinene. Increasing the enzyme concentration of the extract further enhanced the production of pinene to 1256.31 ± 46.12 mg/L with a productivity of 104.7 mg/L h, almost 1.2-fold faster than any system reported thus far. This study demonstrates that a cell-free system is a powerful and robust platform for biomanufacture.


Assuntos
Monoterpenos Bicíclicos/química , Escherichia coli/química , Monoterpenos Bicíclicos/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo
6.
Synth Syst Biotechnol ; 4(3): 113-119, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31198860

RESUMO

α-Pinene is an important monoterpene, which is widely used as a flavoring agent and in fragrances, pharmaceuticals and biofuels. Although an evolved strain Escherichia coli YZFP, which had higher tolerance to pinene and titer, has been successfully used to produce high levels of pinene, the pinene titer is much lower than that of hemiterpene (isoprene) and sesquiterpenes (farnesene) to date. Moreover, the overall cellular physiological and metabolic changes caused by higher tolerance to pinene and overproduction of pinene remains unclear. To reveal the mechanism of Escherichia coli YZFP with the higher tolerance to pinene and titer, a comparative genomics and transcriptional level analyses combining with CRISPR activation (CRISPRa) and interference (CRISPRi) were carried out. The results show that the tolerance to pinene and the overproduction of pinene in E. coli may be associated with: 1) the mutations of the DXP pathway genes, the rpoA and some membrane protein genes, and their upregulations of transcription levels; and 2) the mutations of some genes and their downregulation of transcriptional levels. These comparative omics analyses provided some genetic modification strategies to further improve pinene production. Overexpression of the mutated cbpA, tabA, pitA, rpoA, sufBCDS, mutS, ispH, oppF, dusB, dnaK, dxs, dxr and flgFGH genes further improved pinene production. This study also demonstrated that combining comparative omics analysis with CRISPRa and CRISPRi is an efficient technology to quickly find a new metabolic engineering strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...