Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 240: 113968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788472

RESUMO

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.


Assuntos
Carbono , Nanopartículas , Terapia Fototérmica , Animais , Carbono/química , Camundongos , Nanopartículas/química , Humanos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais
2.
J Hazard Mater ; 470: 134111, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581870

RESUMO

Microplastics (MPs) pose a significant global concern, requiring a multifaceted approach to their risk assessment procedures, especially concerning their characteristics in the environment. The Horqin Left Middle Banner in Northeast China was chosen for the research region to investigate the abundance, composition, distribution, and ecological impact of MPs in surface agricultural soils. The concentrations of MPs ranged from 300 to 12800 items/kg, with a median concentration of 1550 items/kg (average = 1994 items/kg). The normal-sized MPs (500-5000 µm) had a higher relative abundance than small MPs (<500 µm). MPs were mainly derived from textiles and packaging and were affected by atmospheric transportation. Rayon and PET fibers were the main polymers identified. Furthermore, the potential environmental risks posed by the fundamental characteristics (abundance, chemical composition, and size) of MPs were quantified using multiple risk assessment models. The conditional fragmentation model indicated a propensity for MPs to degrade into smaller particles. Ecological risk assessments using pollution load index, pollution hazard index, and potential ecological risk index models revealed varying levels of risk. This study conducted a comprehensive assessment of the ecological risks of MPs based on their environmental characteristics, emphasizing the importance of considering multiple factors in the risk assessment process. ENVIRONMENT IMPLICATION: This study investigates the occurrence, distribution, and ecological risk of microplastics (MPs) in agricultural soils of the Northeast Plain of China, a major food production area. MPs are persistent organic pollutants that can pose threats to soil health, crop quality, and food security. By analyzing the composition, size, and source of MPs, as well as their fragmentation and stability in soil, this study provides valuable data for assessing the environmental risk of MPs in agricultural regions. The study also suggests strategies for mitigating MPs pollution and protecting soil ecosystems.

3.
Chemosphere ; 353: 141627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447899

RESUMO

Antibiotics have garnered growing attention as pharmaceuticals ubiquitously present in human society. Within the soil environment, antibiotics exhibit a propensity for high environmental persistence, thereby posing a potential threat to the ecosystem. However, research on antibiotics in agricultural-pastoral ecotone soils is scarce. This study investigates the occurrence, distribution and risk of 11 common antibiotics in agricultural soils of the agro-pastoral transition zone in Horqin Left Middle Banner, eastern Inner Mongolia. The total concentration varies from not detectable to 609.62 µg/kg. Tetracyclines are the dominant antibiotic, with a higher detection frequency than Macrolides and Sulfonamides. The detection rates of the three types of antibiotics differ significantly. The study also finds that soil properties (organic matter content, pH, bulk density, clay, cation exchange capacity have no significant correlation with antibiotics in soil. Moreover, spatial regression analysis reveals that population density is the primary factor influencing the spatial distribution of antibiotics in soil. Ecological risk assessment shows that clarithromycin and erythromycin are the two most harmful factors in the ecological risk of agricultural soil.


Assuntos
Antibacterianos , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo/química , Ecossistema , Poluentes do Solo/análise , China , Monitoramento Ambiental
4.
Curr Opin Struct Biol ; 85: 102777, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310737

RESUMO

The development of anti-aging interventions requires quantitative measurement of biological age. Machine learning models, known as "aging clocks," are built by leveraging diverse aging biomarkers that vary across lifespan to predict biological age. In addition to traditional aging clocks harnessing epigenetic signatures derived from bulk samples, emerging technologies allow the biological age estimating at single-cell level to dissect cellular diversity in aging tissues. Moreover, imaging-based aging clocks are increasingly employed with the advantage of non-invasive measurement, making it suitable for large-scale human cohort studies. To fully capture the features in the ever-growing multi-modal and high-dimensional aging-related data and uncover disease associations, deep-learning based approaches, which are effective to learn complex and non-linear relationships without relying on pre-defined features, are increasingly applied. The use of big data and AI-based aging clocks has achieved high accuracy, interpretability and generalizability, guiding clinical applications to delay age-related diseases and extend healthy lifespans.


Assuntos
Envelhecimento , Longevidade , Humanos , Aprendizado de Máquina , Biomarcadores
5.
Sci Total Environ ; 912: 169163, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072279

RESUMO

Hardpan-based profiles naturally formed under semi-arid climatic conditions have substantial potential in rehabilitating sulfidic tailings, resulting from their aggregation microstructure regulated by Fe-Si cements. Nevertheless, eco-engineered approaches for accelerating the formation of complex cementation structure remain unclear. The present study aims to investigate the microbial functions of extremophiles on mineral dissolution, oxidation, and aggregation (cementation) through a microcosm experiment containing pyrites and polysilicates, of which are dominant components in typical sulfidic tailings. Microspectroscopic analysis revealed that pyrite was rapidly dissolved and massive microbial corrosion pits were displayed on pyrite surfaces. Synchrotron-based X-ray absorption spectroscopy demonstrated that approximately 30 % pyrites were oxidized to jarosite-like (ca. 14 %) and ferrihydrite-like minerals (ca. 16 %) in talc group, leading to the formation of secondary Fe precipitates. The Si ions co-dissolved from polysilicates may be embedded into secondary Fe precipitates, while these clustered Fe-Si precipitates displayed distinct morphology (e.g., "circular" shaped in the talc group, "fine-grained" shaped in the chlorite group, and "donut" shaped in the muscovite group). Moreover, the precipitates could join together and act as cementing agents aggregating mineral particles together, forming macroaggregates in talc and chlorite groups. The present findings revealed critical microbial functions on accelerating mineral dissolution, oxidation, and aggregation of pyrite and various silicates, which provided the eco-engineered feasibility of hardpan-based technology for mine site rehabilitation.


Assuntos
Acidithiobacillus , Cloretos , Ferro , Dióxido de Silício , Sulfetos , Talco , Minerais/química , Eletrólitos , Ferro da Dieta
6.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091466

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Assuntos
Compostos Férricos , Micorrizas , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Análise de Fourier , Minerais/química , Solo/química , Ferro
7.
Toxics ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133425

RESUMO

The potential negative impacts of organochlorine pesticides on the environment and human health continue to receive attention. In order to study the spatial distribution characteristics of organochlorine pesticides in the inland alpine region, researchers collected soil and water samples in the Huangshui River Basin of the Qinghai-Tibetan Plateau and tested them for organochlorine pesticide residues represented by dichlorodiphenyltrichloroethane (DDT) and hexachlorohexane (HCH). The study identified the sources of OCPs by component analysis. We also constructed the LEVEL III model, applicable to the Huangshui River Basin, and used it to study the migration patterns of OCPs in various environmental media. OCPs were detected at low levels in the study area environment. The results of the OCPs source analysis show that there are both historical residuals and new sources in the region. Residual DDTs may originate from the mixture of technical DDTs and dicofol, and HCHs may originate from lindane or technical HCH. DDTs are mainly stored in soil, the input and output pathways are mainly atmospheric advection input and output, and its transport behavior in the environment is mainly air-soil exchange. Carcinogens in the study area pose little threat to people exposed to contaminated soil and contaminated water, but the cancer risk to children is greater than to adults. This study is helpful to managers of regional pesticide management and control.

8.
Angew Chem Int Ed Engl ; 62(45): e202308093, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37525424

RESUMO

Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end".

9.
ACS Appl Mater Interfaces ; 15(12): 15775-15784, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917728

RESUMO

Tin (Sn)-based perovskite solar cells (PSCs) have attracted extensive attention due to the irlow toxicity and excellent optoelectric properties. Nonetheless, the development of Sn-based PSCs is still hampered by poor film quality due to the fast crystallization and the oxidation from Sn2+ to Sn4+. In this work, we compare and employ three ethylammonium halides, EAX (X = Cl, Br, I) to explore their roles in Sn-based perovskites and solar cells. We find that crystallinity and crystallization orientation of perovskites are optimized with the regulation of EAI. EABr leads to reduced defect density and enhanced crystallinity but also the lowest absorption and the widest band gap owing to the substitution of Br-. Notably, perovskites with EACl exhibit the best crystallinity, lowest defect density, and excellent antioxidant capacity benefiting from the partial substitution of Cl-. Consequently, the EACl-modified device achieves a champion PCE of 12.50% with an improved Voc of 0.79 V. Meanwhile, an unencapsulated EACl device shows excellent shelf stability with negligible efficiency degradation after 5400 h of storage in a N2-filled glovebox, and the encapsulated device retains its initial efficiency after continuous light illumination at the maximum power point for 100 h in air.

10.
Environ Pollut ; 319: 121006, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610652

RESUMO

The Huangshui catchment on the northeastern Qinghai-Tibet Plateau (QTP) was selected as the study area to investigate the abundance, distribution characteristics, and influencing factors of microplastics (MPs) in surface agricultural soils (0-20 cm). The MP levels ranged from 6 to 444 items/kg, with an average of 86 items/kg. The relative abundance of small-sized MPs (<2 mm) was higher than that of large-sized MPs (2-5 mm). Polyethylene was the most common, and residual mulching film in farmland was the main source of MPs. The spatial distribution characteristics of MPs were analyzed through inverse distance weight interpolation, and MP abundance in agricultural soils in neighboring urban areas was significantly higher than that in other areas. Further analysis found that population density was significantly positively correlated with MP abundance (R2 = 0.9090, p < 0.01), indicating that human activities play a key role in MP pollution even in remote areas. In addition, the effects of irrigation, land use type, and soil physicochemical properties on the abundance of MPs were analyzed. Atmospheric transport and irrigation with surface water contribute to soil MP pollution. The direct effects of soil properties on MP abundance are still largely unclear, requiring further studies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Solo
11.
Environ Sci Pollut Res Int ; 30(3): 7582-7592, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36040693

RESUMO

This study presents monitoring data on the spatial distribution and occurrence of pesticide residues of cultivated soil in the Huangshui catchment in the northeastern part of the Qinghai Tibet Plateau. We also provide factors that influence the distribution of pesticides, such as the properties of pesticides and soil and crop types. A total of 110 soil samples were collected in early April 2021, and 49 pesticides were analyzed. Only 3.6% of the samples contained no pesticide residues (concentrations < limit of quantitation or not detected [ND]), and the total pesticide concentration ranged from ND to 0.925 mg/kg. Most commonly, two to five pesticides were found in the soil samples (> 70.9%), and up to 10 pesticide residues were present in some samples. A total of 85 different pesticide combinations were observed in all the soil samples. Chlorpyrifos and difenoconazole were the dominant compounds. The levels of pesticide residues were mainly driven by their half-life values. Bulk density, along with soil water content and pH, also affected the retention of pesticides in the soil. The crop type played no role in the distribution of pesticides.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Resíduos de Praguicidas/análise , Tibet , Monitoramento Ambiental , Poluentes do Solo/análise , Praguicidas/análise , Solo/química
13.
ACS Sens ; 7(5): 1524-1532, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512281

RESUMO

Emerging liquid biopsy methods for investigating biomarkers in bodily fluids such as blood, saliva, or urine can be used to perform noninvasive cancer detection. However, the complexity and heterogeneity of exosomes require improved methods to achieve the desired sensitivity and accuracy. Herein, we report our study on developing a breast cancer liquid biopsy system, including a fluorescence sensor array and deep learning (DL) tool AggMapNet. In particular, we used a 12-unit sensor array composed of conjugated polyelectrolytes, fluorophore-labeled peptides, and monosaccharides or glycans to collect fluorescence signals from cells and exosomes. Linear discriminant analysis (LDA) processed the fluorescence spectral data of cells and cell-derived exosomes, demonstrating successful discrimination between normal and different cancerous cells and 100% accurate classification of different BC cells. For heterogeneous plasma-derived exosome analysis, CNN-based DL tool AggMapNet was applied to transform the unordered fluorescence spectra into feature maps (Fmaps), which gave a straightforward visual demonstration of the difference between healthy donors and BC patients with 100% prediction accuracy. Our work indicates that our fluorescent sensor array and DL model can be used as a promising noninvasive method for BC diagnosis.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Exossomos , Feminino , Corantes Fluorescentes , Humanos , Biópsia Líquida/métodos
14.
J Colloid Interface Sci ; 610: 982-993, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34876261

RESUMO

HYPOTHESIS: Analytical expressions for calculating Hamaker constant (HC) and van der Waals (VDW) energy/force for interaction of a particle with a solid water interface has been reported for over eighty years. This work further developed novel analytical expressions and numerical approaches for determining HC and VDW interaction energy/force for the particle approaching and penetrating air-water interface (AWI), respectively. METHODS: The expressions of HC and VDW interaction energy/force before penetrating were developed through analysis of the variation in free energy of the interaction system with bringing the particle from infinity to the vicinity of the AWI. The surface element integration (SEI) technique was modified to calculate VDW energy/force after penetrating. FINDINGS: We explain why repulsive VDW energy exists inhibiting the particle from approaching the AWI. We found very significant VDW repulsion for a particle at a concave AWI after penetration, which can even exceed the capillary force and cause strong retention in water films on a solid surface and at air-water-solid interface line. The methods and findings of this work are critical to quantification and understanding of a variety of engineered processes such as particle manipulation (e.g., bubble flotation, Pickering emulsion, and particle laden interfaces).


Assuntos
Água , Emulsões
15.
J Contam Hydrol ; 240: 103799, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33799018

RESUMO

This study integrated batch experiments and theoretical calculations to understand the equilibrium adsorption and kinetic interaction of CdSeS/ZnS alloyed quantum dots nanoparticles (QDNPs) in sand porous media under different ionic strengths (ISs; 0.001-0.2 M NaCl). Our experimental results showed that equilibrium was reached for QDNP concentration between solid phase and bulk solution due to reversible adsorption of the QDNPs on sand surfaces. Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations showed that the repulsive energy barriers were low and primary energy wells were shallow (i.e., comparable to the average kinetic energy of a colloid) at all tested solution ISs. Hence, the QDNPs could mobilize into and simultaneously escape from the primary wells by Brownian diffusion, resulting in the reversible adsorption. Additional batch experiments confirmed that a fraction of adsorbed QDNPs was released even without any perturbation of system conditions. The release was more evident at a lower IS because the primary energy wells spanned more narrowly at low ISs and thus the nanoparticles have a higher possibility to escape out. The batch kinetic experiments showed that the adsorption of QDNPs followed first- and second-order kinetic interactions at low and high ISs, respectively. These results indicate that the well-known colloid filtration theory that assumes irreversible first-order kinetics for colloid deposition is not suitable for describing the QDNP adsorption. The findings in our work can aid better description and prediction of fate and transport of QDNPs in subsurface environments.


Assuntos
Nanopartículas , Pontos Quânticos , Coloides , Cinética , Concentração Osmolar , Porosidade
16.
ACS Appl Mater Interfaces ; 12(26): 29094-29102, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510916

RESUMO

The Fe element is essential for human beings, but overdose of Fe leads to unwanted toxicity. However, overwhelming Fe accumulation in tumor cells could arouse strong oxidative stress for cancer therapy. Therefore, the fast and specific accumulation of Fe in tumor cells without systemic toxicity is critical for this purpose. Herein, we report that a carbon nanoparticles-Fe(II) complex (CNSI-Fe) could efficiently load Fe into tumor cells and inhibit tumor growth with low toxicity in H22 tumor-bearing mice. Upon intratumoral injection, CNSI-Fe only induced meaningful Fe increase in the tumor to significantly inhibit tumor growth with competitive efficiency to cis-dichlorodiammineplatinum(II). Fe accumulation stimulated the hydroxyl radical generation and serious oxidative stress in the tumor. Due to the lack of Fe accumulation in other tissues, CNSI-Fe was of low systemic toxicity to tumor-bearing mice. With the clinical success of CNSI for decades, CNSI-Fe might be used for cancer therapy through "off label" use to benefit patients immediately.


Assuntos
Carbono/química , Nanopartículas/química , Animais , Cisplatino/química , Humanos , Radical Hidroxila/química , Ferro/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
17.
ACS Appl Bio Mater ; 3(9): 5639-5643, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021795

RESUMO

Successful discrimination of complex biological samples by sensor array remains a challenging problem. Herein, a three-unit fluorescence sensor array was fabricated using fluorescent molecules, which interact with proteins and generate rich response signals, to realize the discrimination of urinary proteins. As a proof of concept, six urinary proteins were selected as analytes. Results showed 100% accuracy in differentiation and quantitative discrimination of every single protein and their complex mixtures. Moreover, protein profiles of urine samples from healthy people and patients with different urinary diseases, including tubular injury (TI), diabetic nephropathy (DN), and nephropathy (Nep), were well distinguished.

18.
MedComm (2020) ; 1(2): 202-210, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766118

RESUMO

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). Carbon nanoparticles suspension injection (CNSI) is a commercial imaging reagent for lymph node mapping. CNSI has similar structural characteristics to other carbon nanomaterials, and thus, might be applied as photothermal agent. Herein, we evaluated the photothermal conversion ability and therapeutic effects of CNSI on thyroid carcinoma. CNSI was composed by carbon nanoparticle cores and polyvinylpyrrolidone K30 as the dispersion reagent. CNSI absorbed NIR light efficiently following the Lambert-Beer law. The temperature of CNSI dispersion increased quickly under the NIR irradiation. CNSI killed the TCP-1 thyroid carcinoma cells under 808 nm laser irradiation at 0.5 W/cm2, while CNSI or NIR irradiation treatment alone did not demonstrate this effect. Temperature increases were observed in tumor injected with CNSI under NIR irradiation. After three irradiation treatments, the tumor growth was completely blocked and the disruption of cellular structure was observed. When the tumor temperatures reached 53°C during treatment, the tumors did not recur within the observation period of 3 months. Our results suggested that CNSI might be used for PTT through "off label" use to benefit the patients immediately.

19.
Water Res ; 151: 296-309, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616042

RESUMO

This study evaluated attachment of a 30-nm nanoparticle to and detachment from fractal surfaces by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies in three-dimensional space using the surface element integration technique. The fractal surfaces were generated using the Weierstass-Mandelbrot function with varying values of fractal dimension D (2.3 ≤ D ≤ 2.7) and fractal roughness G (0.000136 ≤ G ≤ 0.136). Results show that maximum energy barrier is reduced at peak areas of a fractal surface, and hence attachment in primary minima is favored. Some nanoparticles attached in primary minima at the peak areas can be detached by decreasing ionic strength (IS) due to monotonic decrease of interaction energy with increasing separation distance at low ISs. While the attachment in primary minima at valley areas is irreversible to IS reduction, the attachment is inhibited due to enhanced maximum energy barrier at these areas. A nonmonotonic variation of attachment efficiency in primary minimum (AEPM) with IS is present at high fractal dimension (D ≥ 2.4) or low fractal roughness (G < 0.00136), whereas the AEPM decreases monotonically with decreasing IS at low fractal dimension (D < 2.4) or high fractal roughness (G ≥ 0.00136). The AEPM decreases monotonically with increasing D or decreasing G at ISs from 1 mM to 200 mM. The decrease of AEPM with D or G is much slower at 10 mM compared to other ISs. These theoretical findings can explain various experimental observations in the literature, and can have important utility to development of water filtration techniques in engineered systems and to assessment of environmental risks of nanoparticles.


Assuntos
Fractais , Nanopartículas , Concentração Osmolar , Propriedades de Superfície , Água
20.
RSC Adv ; 9(15): 8230-8238, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518661

RESUMO

Chromium(vi) [Cr(vi)] has been shown to be toxic to organisms due to its mutagenicity and carcinogenicity. Therefore, the exploitation of probes with low toxicity and high sensitivity for Cr(vi) detection is needed. In this study, a one-step, solvent-free, and microwave-assisted method was developed for the preparation of nitrogen-doped carbon dots (N-CDs). The reaction could be finished in just three minutes, and the yield of the dots could reach 58.5%; the as-prepared N-CDs exhibited excellent water solubility, emitted bright cyan fluorescence with a high quantum yield of 38.88%, and possessed excitation- and concentration-dependent characteristics. The N-CDs could be effectively applied to Cr(vi) detection with a linear range of 1-100 µM, and the detection limit could be as low as 0.12 µM. The quenching mechanism was responsible for the inner filter effect, and the quenched fluorescence could be recovered with a linear range of 5-100 µM by the addition of ascorbic acid. We showed that the fluorescent probes could even be employed for the detection of Cr(vi) in river water and for bio-imaging because of their nearly zero cytotoxicity; this showed the potential application of these probes in ion detection and cellular bioimaging. Herein, we have provided an effective strategy to rapidly obtain high-quality N-CDs using a solid-phase microwave method, and the as-prepared N-CDs exhibit various potential applications in environmental and biological fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...