Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(6): 1059-1070.e4, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36841237

RESUMO

The history of Earth's biodiversity is punctuated episodically by mass extinctions. These are characterized by major declines of taxon richness, but the accompanying ecological collapse has rarely been evaluated quantitatively. The Permian-Triassic mass extinction (PTME; ∼252 mya), as the greatest known extinction, permanently altered marine ecosystems and paved the way for the transition from Paleozoic to Mesozoic evolutionary faunas. Thus, the PTME offers a window into the relationship between taxon richness and ecological dynamics of ecosystems during a severe extinction. However, the accompanying ecological collapse through the PTME has not been evaluated in detail. Here, using food-web models and a marine paleocommunity dataset spanning the PTME, we show that after the first extinction phase, community stability decreased only slightly despite the loss of more than half of taxonomic diversity, while community stability significantly decreased in the second phase. Thus, taxonomic and ecological changes were unequivocally decoupled, with species richness declining severely ∼61 ka earlier than the collapse of marine ecosystem stability, implying that in major catastrophes, a biodiversity crash may be the harbinger of a more devastating ecosystem collapse.


Assuntos
Ecossistema , Extinção Biológica , Fósseis , Biodiversidade , Evolução Biológica
2.
Sci Adv ; 8(26): eabo0597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767613

RESUMO

The Permian-Triassic mass extinction severely depleted biodiversity, primarily observed in the body fossil of well-skeletonized animals. Understanding how whole ecosystems were affected and rebuilt following the crisis requires evidence from both skeletonized and soft-bodied animals; the best comprehensive information on soft-bodied animals comes from ichnofossils. We analyzed abundant trace fossils from 26 sections across the Permian-Triassic boundary in China and report key metrics of ichnodiversity, ichnodisparity, ecospace utilization, and ecosystem engineering. We find that infaunal ecologic structure was well established in the early Smithian. Decoupling of diversity between deposit feeders and suspension feeders in carbonate ramp-platform settings implies that an effect of trophic group amensalism could have delayed the recovery of nonmotile, suspension-feeding epifauna in the Early Triassic. This differential reaction of infaunal ecosystems to variable environmental controls thus played a substantial but heretofore little appreciated evolutionary and ecologic role in the overall recovery in the hot Early Triassic ocean.

3.
Proc Biol Sci ; 288(1947): 20210148, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726593

RESUMO

The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295-174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian-Triassic (P-Tr) and is flanked by two smaller crises, the Guadalupian-Lopingian (G-L) and Triassic-Jurassic (T-J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P-Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G-L and T-J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P-Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P-Tr extinction.


Assuntos
Ecossistema , Extinção Biológica , Biodiversidade , China , Fósseis , Água Doce , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...