Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15702, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973190

RESUMO

To investigate the particle size distribution of particulate matter and the concentration of specific perfluorinated compounds in indoor dust samples from several locations. Then, we used cell-based assays to investigate the effect of perfluorinated compounds on human corneal epithelial (HCEpiC), endothelial cells (HCEC) and retinal pigment epithelial cells (RPE). Indoor dust samples were collected at five different locations and PM50-10, PM10-2.5, and PM2.5-1 were fractionized. The presence and levels of 8:2 fluorotelomer alcohol, 10:2 fluorotelomer alcohol, and perfluorooctanoic acid were detected by gas chromatography-mass spectrometry. The effect of perfluorooctanoic acid on the activation of reactive oxygen species, transepithelial resistance as well as the expression of interleukin (IL)-6 and IL-8 were determined. The basolateral media of human corneal epithelial or human corneal endothelial cells were used to treat human corneal endothelial or retinal pigment epithelial cells, respectively to indicate the potential of ocular surface inflammation may result in retinal inflammation. Among perfluorinated compounds, only perfluorooctanoic acid was detected in all indoor dust samples. Perfluorooctanoic acid had the highest concentration among all perfluorinated compounds in the samples. Exposure to perfluorooctanoic acid impaired tight junction sealing and increased the levels of reactive oxygen species in human corneal epithelial cells. In human corneal epithelial cells, secretion of IL-6 and IL-8 in both apical and basolateral media was promoted significantly by perfluorooctanoic acid treatment. Stimulation with the basolateral media from perfluorooctanoic acid-treated human corneal epithelial cells induced inflammation in human corneal endothelial cells. The treatment of retinal pigment epithelial cells with the basolateral media from stimulated human corneal endothelial cells also elicited the secretion of proinflammatory cytokines. The results indicate that perfluorooctanoic acid exposure impaired the tight junction of corneal cells and caused inflammatory reactions in the retina. Exposure of the cornea to perfluorooctanoic acid contained in particulate matter might induce oxidative stress and inflammation in the retina and represent a risk factor for age-related macular degeneration.


Assuntos
Caprilatos/farmacologia , Córnea/efeitos dos fármacos , Fluorocarbonos/farmacologia , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/farmacologia , Retina/efeitos dos fármacos , Córnea/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
2.
Sci Rep ; 9(1): 8018, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142804

RESUMO

Ultraviolet (UV) light irradiation on CeO2 nanocrystals catalysts has been observed to largely increase the material's catalytic activity and reactive surface area. As revealed by x-ray absorption near edge structure (XANES) analysis, the concentration of subvalent Ce3+ ions in the irradiated ceria samples progressively increases with the UV-light exposure time. The increase of Ce3+ concentration as a result of UV irradiation was also confirmed by the UV-vis diffuse reflectance and photoluminescence spectra that indicate substantially increased concentration of oxygen vacancy defects in irradiated samples. First-principle formation-energy calculation for oxygen vacancy defects revealed a valence-hole-dominated mechanism for the irradiation-induced reduction of CeO2 consistent with the experimental results. Based on a Mars-van Krevelen mechanism for ceria catalyzed oxidation processes, as the Ce3+ concentration is increased by UV-light irradiation, an increased number of reactive oxygen atoms will be captured from gas-phase O2 by the surface Ce3+ ions, and therefore leads to the observed catalytic activity enhancement. The unique annealing-free defect engineering method using UV-light irradiation provides an ultraconvenient approach for activity improvement in nanocrystal ceria for a wide variety of catalytic applications.

3.
Toxicol Sci ; 158(1): 151-163, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460142

RESUMO

Silver nanoparticles (AgNPs) enter the central nervous system through the blood-brain barrier (BBB). AgNP exposure can increase amyloid beta (Aß) deposition in neuronal cells to potentially induce Alzheimer's disease (AD) progression. However, the mechanism through which AgNPs alter BBB permeability in endothelial cells and subsequently lead to AD progression remains unclear. This study investigated whether AgNPs disrupt the tight junction proteins of brain endothelial cells, and alter the proteomic metabolism of neuronal cells underlying AD progression in a triple cell coculture model constructed using mouse brain endothelial (bEnd.3) cells, mouse brain astrocytes (ALT), and mouse neuroblastoma neuro-2a (N2a) cells. The results showed that AgNPs accumulated in ALT and N2a cells because of the disruption of tight junction proteins, claudin-5 and ZO-1, in bEnd.3 cells. The proteomic profiling of N2a cells after AgNP exposure identified 298 differentially expressed proteins related to fatty acid metabolism. Particularly, AgNP-induced palmitic acid production was observed in N2a cells, which might promote Aß generation. Moreover, AgNP exposure increased the protein expression of amyloid precursor protein (APP) and Aß generation-related secretases, PSEN1, PSEN2, and ß-site APP cleaving enzyme for APP cleavage in ALT and N2a cells, stimulated Aß40 and Aß42 secretion in the culture medium, and attenuated the gene expression of Aß clearance-related receptors, P-gp and LRP-1, in bEnd.3 cells. Increased Aß might further aggregate on the neuronal cell surface to enhance the secretion of inflammatory cytokines, MCP-1 and IL-6, thus inducing apoptosis in N2a cells. This study suggested that AgNP exposure might cause Aß deposition and inflammation for subsequent neuronal cell apoptosis to potentially induce AD progression.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Ácidos Graxos/metabolismo , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Neurônios/metabolismo , Proteômica , Prata/química , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Azul Evans/metabolismo , Mediadores da Inflamação/metabolismo , Nanopartículas Metálicas/química , Camundongos , Neurônios/citologia , Proteínas de Junções Íntimas/metabolismo
4.
Environ Toxicol ; 32(6): 1742-1753, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28181394

RESUMO

Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2 O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+ -regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT-BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2 O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.


Assuntos
Astrócitos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Lisossomos/metabolismo , Nanopartículas Metálicas/toxicidade , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Necrose , Neurônios/imunologia , Neurônios/metabolismo , Fagocitose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
Environ Toxicol Pharmacol ; 47: 108-118, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27664952

RESUMO

An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8nm) and TiO2 nanoparticles (TiO2NPs; 6nm and 35nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO2NPs in BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Claudina-5/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Nanopartículas Metálicas/química , Camundongos , Microscopia Eletrônica de Transmissão , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo , Prata/farmacocinética , Titânio/farmacocinética , Testes de Toxicidade/métodos , Proteína da Zônula de Oclusão-1/metabolismo
6.
J Nanobiotechnology ; 14(1): 50, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334629

RESUMO

BACKGROUND: Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). RESULTS: All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. CONCLUSIONS: Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization.


Assuntos
Nanopartículas/análise , Neurônios/efeitos dos fármacos , Prata/farmacocinética , Titânio/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Espectrometria de Massas/métodos , Camundongos , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Prata/análise , Prata/toxicidade , Titânio/análise , Titânio/toxicidade
7.
Toxicol In Vitro ; 34: 289-299, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27131904

RESUMO

Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder.


Assuntos
Astrócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Prata/toxicidade , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-2/genética
8.
Chem Biol Interact ; 254: 34-44, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27216632

RESUMO

Although, titanium dioxide nanoparticles (TiO2NPs) are nanomaterials commonly used in consumer products, little is known about their hazardous effects, especially on central nervous systems. To examine this issue, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were exposed to 6 nm of 100% anatase TiO2NPs. A lipopolysaccharide (LPS) was pre-treated to activate glial cells before NP treatment for mimicking NP exposure under brain injury. We found that ALT and BV-2 cells took up more NPs than N2a cells and caused lower cell viability. TiO2NPs induced IL-1ß in the three cell lines and IL-6 in N2a. LPS-activated BV-2 took up more TiO2NPs than normal BV-2 and released more intra/extracellular reactive oxygen species (ROS), IL-1ß, IL-6 and MCP-1 than did activated BV-2. Involvement of clathrin- and caveolae-dependent endocytosis in ALT and clathrin-dependent endocytosis and phagocytosis in BV-2 both had a slow NP translocation rate to lysosome, which may cause slow ROS production (after 24 h). Although TiO2NPs did not directly cause N2a viability loss, by indirect NP exposure to the bottom chamber of LPS-activated BV-2 in the Transwell system, they caused late apoptosis and loss of cell viability in the upper N2a chamber due to H2O2 and/or TNF-α release from BV-2. However, none of the adverse effects in N2a or BV-2 cells was observed when TiO2NPs were exposed to ALT-N2a or ALT-BV-2 co-culture. These results demonstrate that neuron damage can result from TiO2NP-mediated ROS and/or cytokines release from microglia, but not from astrocytes.


Assuntos
Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/química , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Endocitose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/toxicidade , Lisossomos/metabolismo , Nanopartículas Metálicas/química , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Environ Sci Technol ; 49(6): 3813-21, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692749

RESUMO

The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.


Assuntos
Endocitose , Espaço Extracelular/química , Espaço Intracelular/química , Nanopartículas Metálicas/química , Prata/metabolismo , Animais , Ácido Ascórbico/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultura , Endocitose/efeitos dos fármacos , Peróxido de Hidrogênio/química , Íons , Lipopolissacarídeos/química , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Prata/toxicidade
10.
Environ Res ; 136: 253-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460644

RESUMO

Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 µg/ml) exposure, these neural cells had obviously increased IL-1ß secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-ß (Aß) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aß deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.


Assuntos
Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Nanopartículas Metálicas , Prata/química , Animais , Encéfalo/citologia , Camundongos
11.
J Nanopart Res ; 15: 1829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24078789

RESUMO

Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum-in this case, fetal bovine serum-in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 µm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

12.
J Nanosci Nanotechnol ; 11(6): 5228-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770169

RESUMO

Methyl thiazolyl tetrazolium (MTT) and interleukin-8 (IL-8) assays are common colorimetric methods to measure mitochondrial activity and drug induced pro-inflammatory factors. However, many reports have described how MTT absorbance and cytokine adsorption could limit their applicability in evaluating the cytotoxicity of nanomaterials. In this study, we used an acid-containing isopropanol complex as a substitute for dimethyl sulfoxide (DMSO) solvent to dissolve MTT formazan, which was expected to diminish the absorbance of nano-ZnO at 570 nm where maximum absorbance for the MTT formazan was detected. In addition, we used a serum-containing medium to prevent the possible effects of IL-8 protein adsorption in the nano-ZnO and nano-TiO2. The results showed that the modified method by using acid-containing isopropanol step in MTT assay, nano-ZnO exposed to human lung epithelial cells had the lowest cell viability (from 12.5 to 50 microg mL(-1)) and EC50 value (8.4 microg mL(-1)) comparing with the conventional MTT protocol or adding phosphate buffered saline (PBS) to wash cells. The reason for this was the acid-containing isopropanol completely dissolved nano-ZnO with no additional absorbance when compared to the background solvent at 570 nm. On the other hand, the IL-8 protein had a marked influence on the adsorption of nano-TiO2 in the serum-free medium. While only at 100 microg mL(-1) of nano-ZnO, an influence on the adsorption of IL-8 was observed. This could be attributed to the different charges on the surface of nanomaterials. This problem could be overcome through the addition of fetal bovine serum (FBS) to the medium.


Assuntos
Interleucina-8/química , Nanopartículas Metálicas/toxicidade , Sais de Tetrazólio/química , Tiazóis/química , 2-Propanol/química , Adsorção/efeitos dos fármacos , Bioensaio , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/química , Humanos , Interleucina-8/análise , Interleucina-8/metabolismo , Nanopartículas Metálicas/química , Espectrofotometria , Titânio/química , Titânio/toxicidade , Testes de Toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade
13.
Chem Res Toxicol ; 24(3): 303-13, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21341804

RESUMO

Although nanozinc oxide (nano-ZnO) is applied widely in photocatalysts and gas sensors and in biological fields, it can cause serious oxidative stress and DNA damage to mammalian cells. Our aim in this study was to reduce the cytotoxicity of nano-ZnO by coating it with a TiO(2) layer. We used a sol-gel method to synthesize core (nano-ZnO)/shell (TiO(2)) nanoparticles (NPs) with various degrees of coating. Transmission electron microscopy and Raman spectroscopy confirmed that TiO(2) was coated on the nano-ZnO. Moreover, a decrease in the intensity of the pre-edge signal in Ti K-edge X-ray absorption near edge structure spectra revealed that the core/shell NPs had more Ti-O coordination than pure TiO(2) particles; in addition, the Zn K-edge extended X-ray absorption fine structure spectra revealed that after the ZnO NPs had been coated with TiO(2), the coordination number of the ZnO shell increased to 3.3 but that of the ZnZn shell decreased to 6.2, providing further evidence for the ZnO/TiO(2) core/shell structure. To ensure that the core/shell structures did indeed decrease the toxicity of nano-ZnO, we tested the effects of equal amounts of physical mixtures of ZnO and TiO(2) NPs for comparison, employing methyl tetrazolium (MTT), interleukin-8 (IL-8), lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate (DCFH-DA) to assess the particle-induced cytotoxicity, inflammatory response, membrane damage, and intercellular reactive oxygen species (ROS). From X-ray diffraction patterns, we identified the TiO(2) shell as having an amorphous phase, which, unfortunately, exhibited slight cytotoxicity toward the human lung epithelial cell line (A549). Nevertheless, our core/shell nanostructures exhibited less oxidative stress toward A549 cells than did their corresponding ZnO/TiO(2) physical mixtures. In addition, a greater coating of TiO(2) decreased the toxicity of the ZnO NPs. It appears that the ZnO/TiO(2) core/shell structure moderated the toxicity of nano-ZnO by curtailing the release of zinc ions and decreasing the contact area of the ZnO cores.


Assuntos
Nanopartículas Metálicas/toxicidade , Titânio/química , Óxido de Zinco/química , Linhagem Celular Tumoral , Géis/química , Humanos , Interleucina-8/metabolismo , Lactato Desidrogenases/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Estresse Oxidativo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Difração de Raios X
14.
Sci Total Environ ; 409(7): 1219-28, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21255821

RESUMO

Although novel nanomaterials are being produced and applied in our daily lives at a rapid pace, related health and environmental toxicity assessments are lagging behind. Recent reports have concluded that the physicochemical properties of nanoparticles (NPs) have a crucial influence on their toxicities and should be evaluated during risk assessments. Nevertheless, several controversies exist regarding the biological effects of NP size and surface area. In addition, relatively few reports describe the extents to which the physicochemical properties of NPs influence their toxicity. In this study, we used six self-synthesized and two commercial ZnO and TiO2 nanomaterials to evaluate the effects of the major physicochemical properties of NPs (size, shape, surface area, phase, and composition) on human lung epithelium cells (A549). We characterized these NPs using transmission electron microscopy, X-ray diffraction, the Brunauer-Emmett-Teller method, and dynamic laser scattering. From methyl thiazolyl tetrazolium (MTT) and Interleukin 8 (IL-8) assays of both rod- and sphere-like ZnO NPs, we found that smaller NPs had greater toxicity than larger ones--a finding that differs from those of previous studies. Furthermore, at a fixed NP size and surface area, we found that the nanorod ZnO particles were more toxic than the corresponding spherical ones, suggesting that both the size and shape of ZnO NPs influence their cytotoxicity. In terms of the effect of the surface area, we found that the contact area between a single NP and a single cell was more important than the total specific surface area of the NP. All of the TiO2 NP samples exhibited cytotoxicities lower than those of the ZnO NP samples; among the TiO2 NPs, the cytotoxicity increased in the following order: amorphous>anatase>anatase/rutile; thus, the phase of the NPs can also play an important role under size-, surface area-, and shape-controlled conditions.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Titânio/toxicidade , Óxido de Zinco/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície , Titânio/química , Difração de Raios X , Óxido de Zinco/química
15.
J Hazard Mater ; 149(1): 234-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17707585

RESUMO

Dioxin-responsive element-mediated chemical activated luciferase expression (DRE-CALUX) is one of alternative bioassays for the determination of dioxin levels. We have previously established a DRE-CALUX cell line, Huh7-DRE-Luc, by using stable transfection of Huh-7 cells with a reporter plasmid (4xDRE-TATA-Luc) carrying a DRE-driven firefly luciferase gene. It was also shown that arecoline, a major areca nut alkaloid, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytochrome P450 1A1 (CYP1A1) activation in Huh-7 cells. The TCDD-activated aryl hydrocarbon receptor (AhR) induces the DRE-CALUX activation and CYP1A1 gene expression via binding to DRE in promoter regions of these dioxin-responsive genes. In the present study, the effect of arecoline on the TCDD-induced activation of DRE-CALUX and CYP1A1 enzyme in Huh7-DRE-Luc and Huh-7 cells, respectively, was examined. It was found that arecoline inhibited TCDD-induced CYP1A1 activation and however enhanced TCDD-induced DRE-CALUX activation. This finding indicates the differential effect of arecoline on the endogenous dioxin-responsive CYP1A1 and on a stably transfected DRE-driven reporter in human hepatoma cells. The present study suggests that induction of DRE-CALUX alone does not necessarily parallel with endogenous CYP1A1 gene expression, and that the reporter assay may detect interactions that are not functional in endogenous gene.


Assuntos
Arecolina/farmacologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Dibenzodioxinas Policloradas , Bioensaio , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Elementos de Resposta
16.
J Air Waste Manag Assoc ; 53(10): 1225-32, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14604332

RESUMO

The traditional technologies for odor removal of thiol usually create either secondary pollution for scrubbing, adsorption, and absorption processes, or sulfur (S) poisoning for catalytic incineration. This study applied a laboratory-scale radio-frequency plasma reactor to destructive percentage-grade concentrations of odorous dimethyl sulfide (CH3SCH3, or DMS). Odor was diminished effectively via reforming DMS into mainly carbon disulfide (CS2) or sulfur dioxide (SO2). The removal efficiencies of DMS elevated significantly with a lower feeding concentration of DMS or a higher applied rf power. A greater inlet oxygen (O2)/DMS molar ratio slightly improved the removal efficiency. In an O2-free environment, DMS was converted primarily to CS2, methane (CH4), acetylene (C2H2), ethylene (C2H4), and hydrogen (H2), with traces of hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl disulfide. In an O2-containing environment, the species detected were SO2, CS2, carbonyl sulfide, carbon dioxide (CO2), CH4, C2H4, C2H2, H2, formaldehyde, and methanol. Differences in yield of products were functions of the amounts of added O2 and the applied power. This study provided useful information for gaining insight into the reaction pathways for the DMS dissociation and the formation of products in the plasmolysis and conversion processes.


Assuntos
Poluição do Ar/prevenção & controle , Odorantes , Sulfetos/química , Absorção , Adsorção , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...